
A moment estimator for φ and ζ : Simulation results

June 19, 2014

This appendix describes the results of a simulation study examining the performance of
the moment estimators for φ and ζ proposed in the main text. We examined the following
properties of the estimators:

• the bias of the moment estimators, in both absolute and relative terms;

• the relative efficiency of the moment estimator for φ compared to the “näıve” estimator
of φ; and

• the coverage levels of parametric bootstrap confidence intervals for φ and ζ.

The following sections describe the design of the simulations and present the results. The
final section provides and summary and guidance on the use of the moment estimators.

1 Simulation design

We studied the performance of the moment estimators for a single sample of measurements,
where each measurement is generated by applying PIR to a behavior stream that follows
an equilibrium Alternating Poisson Process. The Alternating Poisson Process is a specific
instance of the Alternating Renewal Process in which the interim times and event durations
are both exponentially distributed. We conducted two simulations, one to study the bias
and efficiency of the moment estimators and a second to study the coverage of the bootstrap
confidence intervals. Both simulations used fully crossed factorial designs with four factors:
the prevalence (φ) and incidence (ζ) of the behavior stream, the length of the observation
session as indicated by the number of intervals (K) in the session, and the number of obser-
vation sessions in the sample (n). Throughout, we assumed that there was no rest period in
between active intervals and we fixed the length of the active interval (c) to 1. The behav-
ior’s incidence is therefore measured in terms of behaviors per active interval (i.e., ζ = 1/5
corresponds to an average of one behavior per five intervals).

1.1 Initial simulation

The third column of Table 1 summarizes the factor levels used in the initial simulation. We
varied φ over nearly its entire range, using 50 values from 0.01 to 0.99 that were equally
spaced in the logit of φ. We also included the value of 0, in order to cover the full range of
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Table 1: Simulation Design

Parameter Definition Initial Simulation Bootstrap simulation

φ Prevalence 0; 0.01 to 0.99 in 50 steps 0.01 to 0.50 in 20 steps
ζ Incidence 0.00001; 0.005 to 0.90 in 50

steps; 1, 2, 3
0.005 to 0.50 in 20 steps

K Intervals 20, 40, 60, 80 20, 40, 60, 80
n Measurements 8, 12, 16, 20, 24, 48 8, 12, 16, 20, 24, 48

possible estimates when simulating the bootstrap confidence intervals. We varied ζ over a
range wider than is likely to be encountered in practice, taking 50 values from 0.005 to 0.90
that were equally spaced in the natural logarithm of ζ. We also included values of 0.00001, 1,
2, and 3 in order to cover outlying estimates of zeta when simulating the bootstrap confidence
intervals. The number of intervals ranges from K = 20 to K = 80 in steps of 20. Because
the active interval length was fixed, larger K corresponded to longer observation sessions.
We varied the number of observation sessions per sample from 8 to 24 in steps of 4 and
also included 48 observations per sample. We included n = 48 in order to examine the
performance of the moment estimator in very large samples, but note this sample size is
much larger than would typically be found in a single-case design.

We simulated the PIR measurements using the ARPobservation package for the R sta-
tistical computing environment. For each combination of parameters, we generated 5000
samples, each consisting of n PIR summary measurements. Each PIR measurement was
generated by simulating a behavior stream of length K from an Alternating Poisson Process
with mean event duration µ = φ/ζ and mean interim time λ = (1−φ)/ζ, then applying PIR
with K intervals. For each simulated sample, we then calculated the mean and variance of
the measurements and solved equations (17) and (18) in the main text to obtain moment
estimators φ̂ and ζ̂.

1.2 Bootstrap simulation

We also studied the performance of parametric percentile bootstrap confidence intervals
for prevalence and incidence. To moderate the dimension of this simulation, we excluded
extreme levels of φ and ζ, where the moment estimators would not be expected to perform
well. The fourth column of Table 1 summarizes the design of the bootstrap simulation. We
varied φ from 0.01 to 0.50, taking 20 equal steps in the logit of φ. We varied ζ from 0.05 to
0.50, taking 20 equal steps in the natural logarithm of ζ. The levels of K and n matched
those from the initial simulation.

Given the large number of conditions in the design (more than 60,000), the amount of
computing time necessary to simulate bootstrap samples for each replicate of the simulation
would have been prohibitive. Instead, we estimated the bootstrap confidence intervals based
on the initial simulation results. In the initial simulations, we calculated the 2.5% and 97.5%
percentiles across the 5,000 simulated values of the moment estimators for each combination
of parameter levels. In the bootstrap simulations, we began by simulating 5,000 values of the
moment estimators for each combination of factor levels, just as in the previous simulation.
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We then used bilinear interpolation of the percentiles from the initial simulation to predict
the 2.5% and 97.5% percentiles of the bootstrap distribution of the moment estimators,
simulated from a model with parameter values set to the estimates φ̂ and ζ̂.

R code for reproducing the simulations is available upon request.

2 Bias of the moment estimators

We assessed the bias of the moment estimators in both absolute and relative terms. In abso-
lute terms, the bias of the prevalence estimator is simply E

(
φ̂− φ

)
and that of the incidence

estimator is E
(
ζ̂ − ζ

)
. We calculated the relative bias of the prevalence estimator in terms

of odds, as E
[
φ̂/(1 − φ̂)

]
/ [φ/(1 − φ)]−1, and the relative bias of the incidence estimator as

E
(
ζ̂
)
/ζ−1. Lacking alternative methods of estimation, an analyst may consider estimators

with moderate biases to be tolerable. We therefore adopted a liberal criteria for relative bias,
taking relative bias of between ±5% to be “approximately unbiased.”

Figure 1 depicts the raw bias of the moment estimator for prevalence. The portion of the
parameter space with low bias (-.02 to .02) increases slightly n increases, but the value of
K has relatively little impact on bias. At n = 16, the moment estimator produce estimates
with low bias when φ < .15 and ζ < 0.35, or when φ < .75 and ζ < .10. As the sample size
increases, these ranges expand slightly.

Figure 2 presents results for the relative bias of the estimate of prevalence odds. For any
substantial portion of the parameter space to be unbiased a sample size of at least n = 16
is required. When n = 16 and K = 60, the moment estimator produces approximately
unbiased estimates of prevalence only when .25 < φ < .75 and incidence is relatively low,
ζ < 0.10. This range narrows slightly when the number of intervals is smaller and expands
slightly for K = 80. As n increases, the range where approximately unbiased estimates are
obtained expands to include smaller and larger values of φ as well as larger values of ζ.

Figure 3 depicts the raw bias of the moment estimator for incidence. The portion of the
parameter space with low bias increases as n increases but the value of K has no systematic
impact. At n = 16, the moment estimator produces estimates very low bias when ζ < 0.25
and φ < .12 or when ζ < 0.10 and φ < .50. As the value of n increases, these areas widen to
includes higher values of φ and ζ.

Figure 4 presents results for the relative bias of the estimate of incidence. Compared
to the results for the relative bias of φ̂, even larger sample sizes are required to obtain
approximately unbiased estimates of ζ. A minimum sample size of n = 20 with K = 40
intervals or more is necessary for ζ̂ to be approximately unbiased over a substantial portion
of the parameter space. When n = 20 and K ≥ 40, the moment estimator produces
approximately unbiased estimates in the range 0.03 < ζ < 0.08 and φ < .50, as well as
for ζ ≤ 0.03 and φ < .10. When n = 24 and K ≥ 40, the moment estimator produces
approximately unbiased estimates at 0.025 < ζ < 0.10 and φ < .65 as well as ζ < 0.25 and
φ < .15. Higher values of K tend to widen the portion of the parameter space where the
moment estimator produces approximately unbiased estimates at smaller values of ζ, while
slightly reducing the area at higher values of ζ.
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Taken together, these results suggest that the moment estimators perform reasonably
in terms of absolute bias, but less well if assessed in terms of relative bias. The relative
measures are likely to be more important given that the main text focuses on ratio measures
of change. In relative terms, the moment estimators require relatively large sample sizes
in order to obtain reasonable estimates of either prevalence or incidence over a reasonable
portion of the parameter space. Furthermore, the subset of the parameter space for which
approximately unbiased estimates of both φ and ζ can be obtained is fairly small. When
n = 20 and K ≥ 40, the moment estimator produces approximately unbiased estimates for
both parameters at .25 < φ < .75 and 0.025 < ζ < 0.10. When n = 24 and K ≥ 40,
the moment estimator produces approximately unbiased estimates for both parameters at
.20 < φ < .60 and 0.025 < ζ < 0.10.

3 Moment estimator vs. the “näıve” estimate of preva-

lence

Although the moment estimators perform well in terms of relative bias for only a portion
of the parameter space, there are very few alternatives for estimating prevalence available
to researchers. One method considered in the main text is to simply treat the mean of the
summary measurements as an estimate of prevalence. As a minimal standard, an estimator
of φ should be more accurate than this “näıve” estimator if it is to be recommended for use.
We therefore compared the efficiency of the näıve estimator to that of the moment estimator

for prevalence. We calculated relative efficiency as

√
E
[
(Y P − φ)2

]
/E

[(
φ̂− φ

)2]
, where

Y P is a PIR measurement. Relative efficiency greater than one favors the moment estimator
while relative efficiency below one favor the näıve estimator.

Figure 5 presents the results for the relative efficiency of the moment estimator versus to
the näıve estimator. Even at relatively modest sample sizes of n = 12, the moment estimator
is nearly always more efficient than the näıve estimator when φ < .50. In this space, the
moment estimator performs at least 20% better than the näıve estimate of φ for all values
of ζ > 0.10; this range widens to include smaller values of ζ as the sample size increases.
When n = 12 or more, φ < .25, and ζ > 0.10, the moment estimator is is nearly always
80% more efficient than the näıve estimator. For the larger sample size of n = 24, this range
widens to include φ < .45. Larger values of K increase the area of the parameter space where
the moment estimator performs well. On this basis, we suggest that the minimum number
of intervals that should be used with PIR is K = 40. In summary, although the moment
estimator can be somewhat biased, particularly for small φ or large ζ, it still provides a
substantial improvement over the näıve estimator across a wide range of true parameter
values.
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4 Bootstrap confidence interval performance

Finally, we assessed the actual coverage rates of nominal 95% confidence intervals for preva-
lence and incidence. Just as in our analysis of relative bias, we adopt liberal criteria for
acceptable coverage due to the lack of viable alternative estimators. Specifically, we inter-
pret coverage rates of 94-96% as accurate, 92.5%-97.5% as acceptable, and rates outside of
this range as poor. Note that the coverage rates are invariant to monotonic transformation,
and so results are identical for the log-odds of prevalence and the log of incidence.

Figure 6 depicts the actual coverage rates of the confidence interval for φ. The areas
where the bootstrap produces acceptable or better coverage nearly mirrors that where the
moment estimator produces approximately unbiased estimates, with slightly reduced values
for ζ. At n = 16 and K = 60, the bootstrap confidence intervals have acceptable acceptable
coverage when .25 < φ < .50 and ζ < 0.75. As n increases, this range widens to include
smaller values of φ and larger values of ζ. Larger values of K reduce the area where the
bootstrap produces acceptable coverage, but this may simply be a reflection of the area
shifting to slightly lower values of ζ and slightly higher values of φ.

Figure 7 depicts the actual coverage rates of the confidence interval for ζ. At least accept-
able coverage tends to mirror the area where the moment estimator produces approximately
unbiased estimates. For n = 20 and K ≥ 40, the bootstrap produces acceptable or better
coverage when 0.03 < ζ < 0.08 and φ < .50. For n = 24 and K ≥ 40, the bootstrap produces
acceptable or better coverage when 0.025 < ζ < 0.5 and φ < .50 as well as ζ < 0.25 and
φ < .15. In addition, the coverage is poor when φ is near zero and ζ is either low or high.
Beyond that, there are non-uniform effects of K that tend to alter the coverage and some ar-
eas within the described parameter space where the coverage is less than acceptable. On the
whole, the coverage rates of the bootstrap confidence interval for ζ tend to be non-uniform
and rather difficult to characterize.

5 Discussion

In practice, we expect that observers will use partial interval recording to measure behavior
for only certain classes of behavior, such as those for which prevalence is less than .50 and
events occur neither too frequently nor too infrequently, perhaps in the range of 0.05 <
ζ < 0.50. When prevalence is higher than this, whole interval recording may be a more
appropriate method of direct observation. If the value of incidence is outside the suggested
range, the behaviors of interest happen either more frequently than once every 2 intervals on
average or less frequently than once every 20 intervals on average. In either case, the length
of the active interval may need to be tuned to more appropriate match the frequency of the
behavior. Our discussion on use of the moment estimators is limited to these areas of the
parameter space.

When φ is the primary quantity of interest, a sample size of at least n = 20 with at least
K = 40 intervals per session is needed to obtain an approximately unbiased estimate and a
confidence interval with an acceptable level of coverage over a reasonably large subset of the
parameter space. When n = 20, this area of the parameter space is φ > .25 and ζ < 0.10.
When n = 24, this area of the parameter space grows to include φ > .20 and ζ < 0.10.
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However, note that the moment estimator for prevalence outperforms the näıve estimator
over a large portion of the parameter space when samples sizes are as small as n = 12.

When ζ is the primary parameter of interest, a sample size of at least n = 20 with at
least K = 40 intervals per session is needed to obtain good point estimates and confidence
intervals over some portion of the parameter space. However, this subset includes only a
fairly narrow range of incidence values, 0.03 < ζ < 0.08 when φ < .50, as well as ζ ≤ 0.03
when φ < .10. When n = 24 and K ≥ 40, the moment estimator produces approximately
unbiased estimates at 0.025 < ζ < 0.10 and φ < .50 as well as ζ < 0.25 and φ < .15. Higher
values of K tend to widen the portion of the parameter space where the moment estimator
produces approximately unbiased estimates at smaller values of ζ, while slightly reducing
the area at higher values of ζ. In addition, the coverage is poor at low and high values of ζ
and low values of φ.

There are only small parts of the parameter space where both moment estimators are
close to unbiased (even by our liberal criterion). In general, the areas of the parameter
space where good estimates and confidence intervals can be obtained for prevalence are
areas where they cannot be obtained for incidence, and vice versa. Thus, even though the
moment estimators are the only one of the four methods discussed in the main text that
provide information about both prevalence and incidence, their use should still be restricted
to contexts in which only one or the other quantity is of primary interest. On the whole, the
simulation results presented here indicate that the moment estimators should be used for
tentative, exploratory purposes, but should not be treated as definitive unless based on very
large samples. Analysts might also consider using bootstrap bias correction for the point
estimates or bias-corrected, accelerated bootstrap confidence intervals. These elaborations
on the moment estimators may have improved operating characteristics, though this remains
to be investigated in further simulations.
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