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Abstract

Partial interval recording is a procedure for collecting measurements based on direct

observation of behavior. It is used in several areas of educational and psychological

research, particularly in connection with single-case research. Measurements collected using

partial interval recording suffer from construct invalidity because they are not readily

interpretable in terms of the underlying properties of the behavior. Using an alternating

renewal process model for the behavior under observation, we demonstrate that ignoring

the construct invalidity of PIR data can produce misleading inferences, such as inferring

that an intervention reduces the prevalence of an undesirable behavior when in fact it has

the opposite effect. We then propose four different methods for analyzing PIR summary

measurements, all of which produce estimates of interpretable behavioral parameters. We

demonstrate the methods by applying them to data from two single-case studies of problem

behavior.

Keywords: behavioral observation; partial interval recording; single-case research;

alternating renewal process
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Four methods for analyzing partial interval recording data, with application to single-case

research

Data based on direct observation of behavior are used in many areas of educational

and psychological research, for a variety of purposes. For example, several existing

instruments for diagnosis and assessment of behavioral disorders incorporate direct

observation procedures (Volpe, DiPerna, Hintze, & Shapiro, 2005). In between-subjects

randomized trials, behavioral observations are used both to define entrance criteria and as

outcome measures (e.g., Durand, Hieneman, Clarke, Wang, & Rinaldi, 2012; Landa,

Holman, O’Neill, & Stuart, 2011). Direct observation of behavior is considered a hallmark

of single-case research, because intervention effects on behavioral outcomes often have

immediate and recognizable social implications for the individual participants involved

(Hartmann & Wood, 1990; Horner et al., 2005). The measurements produced by direct

observation are considered “low inference” insofar as they correspond with easily

understood, readily interpretable characteristics of a behavior. In contrast, other

measurement procedures (such as rating scales) require an observer or respondent to make

more abstract, global assessments of a subject’s behavior and can thus be more difficult to

ground in interpretable constructs.

Given the advantages and wide use of behavioral observation data, corresponding

methods for statistical analysis are required. In between-subjects settings, the goal of such

analysis might be to assess the correlates of a behavioral characteristic, such as the extent

to which a parent’s response on an assessment scale predicts some aspect of her child’s

behavior, or to test for differences between groups in the behavioral characteristic. In

within-subjects settings, there is growing interest in methods for statistical analysis and

meta-analysis of single-case research (e.g., Horner, Swaminathan, Sugai, & Smolkowski,

2012; Shadish, Rindskopf, & Hedges, 2008). Single-case designs involve measuring the

behavior of an individual case repeatedly over time, including both before and after the

controlled introduction of an intervention. Effects are identified by assessing changes in the
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pattern of behavior that correspond to the introduction or removal of the intervention.

With behavioral observation data from single-case designs, the goal of statistical analysis

might be to test the hypothesis that the intervention had no effect, to quantify the

magnitude of a behavior change for an individual case using an effect size metric, or to

synthesize effect sizes across multiple cases.

Direct observation procedures require that the behavior of interest be concretely

defined, so that a properly trained observer can judge whether it is present or absent at a

given point in time. For a given operational definition of the behavior, an investigator may

be interested in any of several distinct characteristics, including its prevalence, incidence,

average duration, or average interim time. A behavior’s prevalence is the proportion of

time that it occurs. Incidence is the rate at which new instances of the behavior occur (per

unit time). Mean duration is the average length of each unique episode of the behavior.

Mean interim time is the average length of time in between episodes of the behavior.1 In

order to measure these characteristics, an observer will monitor the behavior of a subject

for a length of time while recording data using one of several different procedures. Data

from the observation session are then usually summarized into a single measurement.

Several different procedures are used to record data during direct observation (Ayres

& Gast, 2010). One common procedure, known as partial interval recording (PIR), involves

dividing an observation session into short time intervals and scoring each interval according

to whether or not the behavior occurs for any part of that interval. The raw scores from an

observation session are then typically summarized by the proportion of intervals during

which the behavior occurred. For instance, a 20 minute session may be divided into 80

intervals, each 15 seconds in length. Each interval is scored as a one if the behavior occurs

at any point during the interval, and otherwise receives a score of zero; a summary score is
1The literature on direct observation of behavior often uses different, somewhat less concise terms for

these quantities. Prevalence is sometimes referred to as “percent duration,” incidence is sometimes called

simply “rate”, mean duration may be termed “duration per occurrence”, and mean interim time is sometimes

called “inter-response time” (Ayres & Gast, 2010).
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given by the proportion of intervals receiving scores of one (equivalently, the mean score

across the intervals).

In contrast to data from most other common recording procedures, summarized PIR

data measure neither the prevalence nor the incidence of a behavior (J. Altmann, 1974;

Mann, Ten Have, Plunkett, & Meisels, 1991). Rather, PIR measurements depend on a

combination of both prevalence and incidence, and the form of this relationship itself

depends on the chosen length of each interval (Kraemer, 1979). Despite this ambiguity

about the construct being measured, interval recording remains in wide use, particularly

within single-case research (Mudford, Taylor, & Martin, 2009; Rapp et al., 2007).2

Only a few available methods of analyzing PIR measurements account for how it

confounds multiple constructs. S. A. Altmann and Wagner (1970) noted that if the

behavior being observed follows a Poisson process, then applying a complementary log

transform to the summary measurements yields a measure of incidence. However, the

Poisson process model is only appropriate for behaviors where individual behavioral events

have negligible duration. Furthermore, the complementary log transformation is only

suitable when the time between instances of behavior follows an exponential distribution,

and the interpretation of the transformed measurements is quite sensitive to deviations

from that parametric model (Fienberg, 1972).

Ary and Suen (1983) and Suen and Ary (1986) proposed methods for estimating both

incidence and duration from PIR data by counting the frequency of certain patterns in the

sequence of scores corresponding to individual intervals during an observation session.

However, the authors added the qualification that the proposed methods apply only if the

duration of individual behavioral events is always larger than the chosen interval length

and the time in between instances of behavior is always longer than twice the chosen
2Some methods textbooks even recommend its use; for example, Kazdin (2011) advises: “Whenever there

is doubt as to what assessment strategy should be adopted, an interval approach is almost always applicable”

(p. 79).
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interval length.3 Quera (1990) provided a more elaborate technique in a similar vein, for

use under more general conditions. Still, all of these methods require access to the

sequence of raw scores from an observation session. If the analyst has access only to one

summary measurement from each observation session–as would be the case with secondary

data analysis or meta-analysis–then the required calculations cannot be carried out.

Lacking alternatives that are both valid and feasible, an analyst faced with PIR data

may be inclined to simply ignore the construct invalidity of the measurements. In this

paper, we demonstrate that doing so can produce misleading inferences. We then propose

several methods for analyzing PIR data that are framed in terms of readily interpretable

behavioral characteristics and take into account the unusual characteristics of the

measurements. We demonstrate the methods in examples drawn from single-case designs.

The proposed methods are all motivated by a particular model for the sequence of

behaviors actually observed during a given session, or what we will call the behavior

stream. The model, known as an alternating renewal process (ARP), treats the lengths of

individual behavioral events and the interim times between behavioral events as mutually

independent random quantities, each following some probability distribution. The ARP

model provides a basis for expressing the properties of PIR summary measurements as

functions of prevalence and incidence. Rogosa and Ghandour (1991) used the ARP model

to study the psychometric properties of various behavioral observation procedures,

including PIR. Pustejovsky (2013a) used the model to define effect size metrics that are

comparable across a variety of different procedures for collecting behavioral observation

data.

The four analytic methods presented in the following sections rely on distinct set of

further assumptions and yield different information about the behavior. The four methods
3Even under the stated conditions, it is unclear whether the methods are useful; Rogosa and Ghandour

(1991) reported simulation studies in which the methods produce highly biased estimates of incidence and

duration.
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are as follows:

1. Assume that the mean event duration is greater than some known value, which

leads to upper and lower bounds on the prevalence of the behavior.

2. Assume that the mean event duration is less than some known value and that the

probability of a new behavioral event occurring within a certain length of time from the

end of the previous event is less than some known value. These assumptions lead to upper

and lower bounds on the incidence of the behavior.

3. Assume that the mean event duration is equal across two samples of behavior and

that the interim times in each sample follow exponential distributions. These assumptions

lead to upper and lower bounds for the ratio of average interim times in the two samples.

4. Assume that both the event durations and interim times follow exponential

distributions with different means. Moment estimators for prevalence and incidence can

then be derived from analytic expressions for the mean and variance of PIR data.

All four methods rely on fairly strong assumptions about the behavior under observation.

Their application will therefore require careful justification on the basis of prior knowledge.

Furthermore, different assumptions will be appropriate under very different empirical

circumstances, and are not meant to be equal alternatives or competing approaches to

analyzing the same data. Instead, this collection of different methods helps to delineate the

various circumstances under which PIR measurements are actually informative about

characteristics of the behavior stream.

The remainder of this paper is organized as follows. The next section describes the

modeling assumptions (including the ARP model) that are common to all four methods,

then describes effect size parameters that are potential targets of estimation. The following

section uses the model to demonstrate how ignoring the construct invalidity of PIR data

can produce misleading inferences. Each of the following four sections then discusses a

method for analyzing PIR data, describing underlying assumptions and presenting a brief

application to a single-case study. A final section discusses limitations and extensions.
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Common modeling assumptions

This section describes the assumptions of the alternating renewal process model, how

PIR summary measurements are generated under that model, and effect size parameters of

interest. Suppose that the analyst has two samples of PIR measurements, with n0 and n1

measurements, respectively, and that interest is in comparing the samples. Let Ysi denote

the ith PIR measurement from sample s = 0, 1.

All of the methods described below are premised on the assumption that each sample

consists of independent summary measurements, drawn from a common data generating

process. For example, an analyst might have several independent measurements of a

behavior on a single individual during a baseline phase and several further independent

measurements after an intervention is introduced; here, interest is in comparing the

characteristics of the behavior during baseline to those during treatment. The assumption

that the data points from each sample are independent and identically distributed is

admittedly quite restrictive, yet analysis of PIR data is challenging even in this simplistic

case. We comment on alternative assumptions in the final section.

The equilibrium alternating renewal process model

The equilibrium alternating renewal process is a model for the stream of behavior

during a single observation session, all of which goes into the generation of a single

summary measurement Ysi. The model is operationalized in terms of the length of each

unique behavioral event and the interim time between each event, both of which are

treated as random quantities.4 Specifically, the event durations during observation session i

in sample s are assumed to be identically distributed with mean µs and cumulative

distribution function Fs(x;µs). The interim times during the same observation session are

assumed to be identically distributed with mean λs and cumulative distribution function

Gs(x;λs). All interim times and all event durations are assumed to be mutually

independent, so that the length of the next event or interim time does not depend on the
4Kulkarni (2010, Chp. 8) provides an introduction to the mathematics of the ARP.
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sequence of events leading up to it. Finally, the entire process is assumed to be aperiodic

and in equilibrium, so that there is a constant probability that an event is occurring at any

given point in time during the observation session.

Under the ARP model, the prevalence and incidence of the behavior are functionally

related to the the mean event duration µs and the mean interim time λs. Prevalence, which

we will denote as φs, is equal to the ratio of µs to the sum of µs and λs; incidence, which

we will denote as ζs, is equal to the inverse of the sum of µs and λs.

Partial interval recording

To use the PIR procedure, the observer divides a given observation session into K

intervals of equal length. For each interval, the first c time units are used to observe the

behavior, with the remainder of the interval used to record notes; we call c the active

interval length. The observer counts a behavior as present if it occurs at any point during

the active interval. Let Usik = 1 if the behavior occurs at any point during the kth interval,

Usik = 0 otherwise, for k = 1, ..., K, i = 1, ..., ns, and s = 0, 1. The summary measurement

Ysi is calculated as the proportion of intervals during which the behavior is observed at any

point:

Ysi =
K∑
k=1

Usik/K. (1)

Under the assumptions of the ARP, it can be shown that the expected values of

Usi1, ..., UsiK and of Ysi are all equal, with

E (Ysi) = φs + ζs

∫ c

0
[1−Gs(x;λs)] dx, (2)

where
∫ c

0
denotes the definite integral taken over the interval 0 ≤ x < c. A proof of (2) is

given in Pustejovsky (2013a).

Equation (2) makes apparent the crux of the construct validity problem with PIR

data. Namely, the expectation of a PIR summary measurement depends on both the

prevalence and incidence of the behavior, as well as on the exact distribution of interim

times and the length of the active interval used for observation. If one interprets PIR data
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as measuring prevalence, then it is an upwardly biased measure. If one interprets PIR data

as measuring the incidence of a behavior, as might be done when individual event

durations are all very short, then its bias is multiplicative and depends on the probability

that an interim time is less than the active interval length. The analytic methods described

in later sections employ different sets of further assumptions in order to learn about

prevalence, incidence, or other aspects of the underlying parameters of the behavior

stream, based on samples of PIR data.

Target parameters

Under the assumptions of the ARP model, the prevalence, incidence, mean event

duration, and mean interim time of the behavior are the primary parameters of interest.

The analyst’s goal will often be to estimate or construct confidence intervals for effect sizes

that compare these parameters across two samples of measurements. In what follows, we

focus on comparisons in the form of ratios or log-ratios. For instance, to compare the

behavioral prevalence in the samples, we will consider the ratio of prevalence in the second

sample to prevalence in the first sample, φ1/φ0, or its natural logarithm, lnφ1 − lnφ0.

There are three reasons for focusing on ratio comparisons, as we discuss in greater detail

elsewhere (Pustejovsky, 2013a). First, proportionate changes are relatively simple to

interpret. Second, proportionate changes are useful for comparing quantities that are both

strictly positive, in a way that avoids range restrictions. For example, an 80% decrease in

mean event duration is sensible regardless of the initial value of event duration, whereas a

decrease of 5 s does not make sense if the initial event duration is only 3 s. Third, in

certain circumstances, a proportionate change in one parameter can be meaningfully

compared to a proportionate change in another parameter. For instance, if mean event

duration is constant across samples (µ0 = µ1), then the proportionate change in incidence

is equal to the proportionate change in prevalence: ζ1/ζ0 = φ1/φ0. Such equivalence can be

useful when meta-analyzing results across studies that use different measurement

procedures (Pustejovsky, 2013a). Finally, taking the natural logarithm of ratios is often a
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useful transformation for constructing confidence intervals because it can make the range of

the comparison metric less restricted.

Ignoring construct invalidity

One method for analyzing PIR data is to simply ignore the construct invalidity issue

and treat it just like any other measurement. In the context of a single-case design, where

the goal is to evaluate the effect of some intervention on the behavior of a case, it might be

argued that measuring the behavior using PIR is justified so long as the procedure is

applied consistently across measurement occasions (i.e., holding the active interval length

and session length constant for the duration of the study), so that the internal validity of

the study is preserved. This line of argument is incorrect. In this section, we develop two

hypothetical examples demonstrating how using partial interval recording can produce

misleading inferences about whether an intervention has the intended effect. The first

example deals with a state behavior, in which individual instances can last for

non-negligible lengths of time and the target of measurement is the behavior’s prevalence.

The second example deals with a discrete behavior, in which each instance of the behavior

has negligible duration and primary interest is the behavior’s incidence.

Partial interval recording for measuring prevalence of a state behavior

Consider a study evaluating the effect of a particular teaching technique thought to

prevent disruptive behavior. A particular child displays disruptive behavior that can last

for non-trivial lengths of time, and so the main dimension of interest is prevalence. Prior to

intervention, the child displays disruptive behaviors that last an average of µ0 = 6 seconds

and that follow a gamma distribution with F0(x) = Γ(x|2, 3), where Γ(x|k, θ) denotes the

cumulative distribution function of a gamma random variable with shape k and scale θ.5

The interim time between instances of disruptive behavior also follows a gamma

distribution with G0(x) = Γ(x|3, 4), so that the average interim time is λ0 = 12 seconds. It

follows that, on average, the child’s prevalence of disruptive behavior is
5A gamma distribution with shape k and scale θ has mean kθ.
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µ0/(µ0 + λ0) = 0.33. Further suppose that the teaching technique causes an increase in

both the average duration of disruptive events and the average interim time. Specifically,

when the intervention is applied, µ1 = 20, F1(x) = Γ(x|2, 10), λ1 = 30, and

G1(x) = Γ(x|3, 10). The prevalence of the behavior thus increases by 20%, from 0.33 to

0.40, meaning that the intervention does not produce the desired reduction in behavior;

instead, it is actually harmful.

Suppose that the investigator uses an ABAB design, in which an initial control phase

is followed by a treatment phase, a return to the control phase, and a final phase where the

treatment is re-introduced. There are eight observation sessions per phase. During each

session, she measures disruptive behavior using partial interval recording with an active

interval length of c = 15 s, 5 s of rest time for recording, and a total session length of 20

min. Figure 1 plots an example of how the results of this study might appear; we created it

by simulating behavior stream data, applying the partial interval recording procedure, and

calculating summary measurements for each session. In this simulated example, the

average proportion of partial intervals is 0.89 during the A (baseline) phases and 0.68

during the B (intervention) phases; the proportion actually decreases slightly, even though

the true prevalence of the behavior has increased. From Equation (2), one can verify that

the decrease is not just a fluke of the particular sample, but rather will be observed

generally. The mistaken inference arises because PIR data is upwardly biased as a measure

of prevalence, and the magnitude of bias depends the distribution of interim times. In this

example, the decrease in interim time leads to a change in the magnitude of the bias that

masks the increase in prevalence.

Partial interval recording for measuring incidence of a discrete behavior

Similarly deceptive results are also possible when using partial interval recording to

measure the incidence of discrete behaviors. Consider a study evaluating the effect of an

intervention for reducing the self-injurious behavior of a child with autism; the child

displays self-injurious behaviors that have very short duration, so that incidence is the
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primary dimension of interest. Suppose that, prior to intervention, the behaviors follow an

alternating renewal process, with all event durations equal to 0 (so µ0 = 0) and interim

time distribution G0(x) given by the following mixture of two gamma distributions:

G0(x) = 3
5Γ(x|24, 1) + 2

5Γ(x|8, 6).

Given this distribution, the average interim time between self-injurious behaviors is

λ0 = 33.6 seconds. Further suppose that the intervention causes a change in the

distribution of interim times, so that after introducing the treatment, the behaviors follow

an alternating renewal process with µ1 = 0 and interim time distribution G1(x) given by

G1(x) = 3
5Γ(x|2, 2) + 2

5Γ(x|2, 24).

See Figure 2a for a plot of the interim time densities before and after intervention. The

average interim time between self-injurious behaviors is now λ1 = 21.6 seconds. The

behaviors are substantially more frequent (going from 2 per minute to 3 per minute),

meaning that the intervention does not produce the desired reduction in behavior, and is

instead actually harmful.

Suppose that the investigator again uses PIR to measure this behavior. As illustrated

in Figure 2b, her conclusions will depend substantially on what active interval length she

uses. If c = 15 s, she will observe a decrease of 16% on average, from 0.45 intervals in the

absence of intervention to 0.38 intervals during intervention, even though the true

incidence has increased by over 50%. If c = 25 s, she would observe an even larger decrease

of 25%, on average. Only for active interval lengths of less than 9 s would the change in the

expected proportion of intervals have the same sign as the true proportionate change in

incidence.

These two examples illustrate that naive analysis of PIR data can lead to mistaken

inferences under various circumstances, including both when it is treated as a measure of

prevalence and when it is treated as a measure of incidence. The following sections describe
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several different methods for analyzing PIR data that account for the fact that PIR

measurements are in fact sensitive to both prevalence and incidence.

Method 1: A bound for prevalence

The bias in PIR data as a measure of prevalence arises because entire intervals are

counted even when the behavior occurs for only a fraction of the interval duration. As a

result, the proportion of intervals is always rounded up relative to the actual proportion of

session time that the behavior occurs. Intuitively, one might be expect that the upward

bias would be relatively minor if most instances of behavior are longer than the active

interval length.6 Formalizing this intuition leads to a bound for the prevalence of a

behavior in relation to the mean of PIR measurements.

Because PIR always involves rounding up, E (Ys) is an upper bound for prevalence in

sample s. Now suppose that a lower limit on the average event duration can be established

based on an investigator’s experience or knowledge about the behavior being observed, so

that 0 < µ∗L ≤ µs for a known value µ∗L. It follows that the prevalence of the behavior will

not be less than a certain fraction of the expected value of the PIR measurements:

µ∗L
µ∗L + c

E (Ys) ≤ φs ≤ E (Ys) . (3)

A proof is given in Appendix A. Consistent with intuition, a larger value for µ∗L will lead to

a narrower bound for prevalence. However, the value of µ∗L must be large relative to the

active interval length in order for the bound to be narrow. For example, if µ∗L = 2c, the

range of possible values for φs is between 67% and 100% of E (Ys).

The bound given in (3) can be used to establish bounds on the log of the prevalence

ratio in two samples. Assume that the lower bound on the mean event duration holds for

both samples: so that 0 < µ∗L ≤ µ0 and µ∗L ≤ µ1. Let hφ = ln(µ∗L + c)− ln(µ∗L). It follows

from (3) that bounds on the log of the prevalence ratio are given by

ln
[
E (Y1)
E (Y0)

]
− hφ ≤ ln

(
φ1

φ0

)
≤ ln

[
E (Y1)
E (Y0)

]
+ hφ. (4)

6Ary and Suen (1983) make a similar heuristic argument.
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The bounds for the log of the prevalence ratio can be estimated by replacing E (Y0)

and E (Y1) with the sample means. Let ȳs be the mean and s2
s be the variance of the

measurements in sample s = 0, 1. Some of the estimators presented in this and following

sections cannot be calculated if the sample mean is at ceiling or floor levels. To account for

this possibility, define the truncated sample means

ỹs =



1/(nsK) if ȳs = 0

ȳs if 0 < ȳs < 1

1− 1/(nsK) if ȳs = 1

for s = 0, 1. Now, let

R = ln ỹ1 − ln ỹ0 (5)

denote the log-response ratio of the truncated sample means. An estimate of the bounds in

(4) is then given by R± hφ. Because hφ is a known constant, the approximate variance of

the estimated bounds is equivalent to the variance of R, which can be estimated as

VR = s2
0

n0ỹ2
0

+ s2
1

n1ỹ2
1
. (6)

Furthermore, an approximate (1− α) confidence interval (CI) for the log of the prevalence

ratio is given by

R±
(
hφ + zα/2

√
VR

)
, (7)

where zα/2 is the 1− α/2 quantile of a standard normal distribution. Finally, an

approximate (1− α) CI for the prevalence ratio is given by exponentiating the upper and

lower endpoints of (7).

Example 1

Moes (1998) used a single-case design to evaluate the effect of providing

choice-making opportunities in the context of homework tutoring sessions on the disruptive

behavior of four children with autism. The investigators measured disruptive behavior

using PIR with c = 10 s active intervals, 5 s for recording, and K = 80 intervals per
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observation session. Each case was measured for a total of n0 = 10 sessions in the no-choice

condition and n1 = 10 sessions in the choice condition; each condition was introduced

across two phases, using a randomized ABAB/BABA design.

Suppose that, based on experience with the types of disruptive behaviors exhibited

by the study participants, the average length of disruptive behaviors can be established as

greater than µ∗L = 10 s. Base on this assumption, Table 1 reports estimated bounds on the

log of the prevalence ratio for each of the four cases, along with approximate 95% CIs for

each case.7 The final row of the table reports fixed-effects meta-analyses of the end-points

of the bounds. The average log-prevalence ratio across the four cases is estimated to be

between -2.58 and -1.20, equivalent to a 70-92% reduction in disruptive behavior. Based on

the 95% confidence interval of [-3.27,-0.51] for the average-log prevalence ratio, the

treatment leads to a reduction in disruptive behavior of 40-96%. While it is apparent that

the treatment is beneficial, considerable uncertainty remains about the magnitude of the

average effect.

Method 2: A bound for incidence

PIR is sometimes also used in contexts where individual behavioral events are short

and incidence is the primary characteristic of interest. In this circumstance, if the interim

times between events tend to be longer than the active interval length, then few intervals

will contain multiple behavioral events and the number of intervals scored as a one will

closely approximate the total number of events. Formalizing this argument leads to a

bound for the incidence of a behavior in relation to the mean of PIR measurements.

Suppose that average event durations in sample s are shorter than some known value

established based on prior experience, µ∗U ≥ µs. Also suppose that the interim time

between behavioral events is rarely less than the active interval length, so that

G(c;λs) ≤ p < 1 for known value p. It follows that the incidence of the behavior is
7The estimates can be calculated directly from the summary statistics reported in Table 1.
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bounded by known factors of the expected value:

E (Ys)
µ∗U + c

≤ ζs ≤
E (Ys)

(1− p)c. (8)

A proof is given in Appendix B. Here, a smaller value for µ∗U (corresponding to shorter

event durations) will lead to a narrower bound for incidence. A smaller value of p,

corresponding to a lower probability of interim times shorter than c, will also lead to a

narrower bound for incidence. In the limit, if µ∗U = 0 and p = 0 then incidence is a constant

fraction of the expected value of the PIR measurements.

The bound given in (8) can be used to establish bounds on the log of the incidence

ratio in two samples. Assume that the upper limits on the mean event duration and

probability of interim times less than the active interval length hold for both samples, so

that µ0 ≤ µ∗U , µ1 ≤ µ∗U , G0(c;λ0) ≤ p, and G1(c;λ1) ≤ p. Letting

hζ = ln(µ∗U + c)− ln(1− p∗)− ln(c), it follows that

ln
[
E (Y1)
E (Y0)

]
− hζ ≤ ln

(
ζ1

ζ0

)
≤ ln

[
E (Y1)
E (Y0)

]
+ hζ . (9)

These bounds can be estimated from partial interval recording data using R± hζ , where R

is the log-response ratio given in Equation (5). Because hζ is a fixed quantity, the variance

of the bounds estimators can again be estimated as VR from Equation (6). An approximate

(1− α) CI for the log of the incidence ratio can be calculated as R±
(
hζ + zα/2

√
VR
)
;

exponentiating the end-points of the CI provides an equivalent CI for the incidence ratio.

Example 2

Dunlap et al. (1994) used a single-case design to evaluate the effect of providing choice

between academic activities on the disruptive behavior of three elementary school students

with emotional and behavioral disorders. The investigators used PIR to measure disruptive

behavior; for two cases (Sven and Ahmad), measurements were based on an active interval

length of c = 10 s and 5 s for recording, while for the third case (Wendell), measurements

were based on an active interval length of c = 15 s with no time for recording. Observation

sessions lasted 15 min, and each summary measurement was based on K = 60 intervals.
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Based on descriptions of the types of disruptive behaviors exhibited by the three

students, it may be reasonable to assume that the average duration of each behavioral

event was fairly short. Primary interest is therefore in the incidence of disruptive behavior.

To bound the log-incidence ratio, we assume that µ0, µ1 ≤ µ∗U = 10 s. Since the active

interval length varies across cases, we make separate assumptions about p for each case: for

Sven and Ahmad we assume that the probability of interim times less than c = 10 s is at

most p = 0.15, implying that hζ = 0.86; for Wendell, we assume that the probability of

interim times less than c = 15 s is at most p = 0.25, implying that hζ = 0.80.8

Table 2 provides summary statistics by treatment condition for each case in the

study, along with estimated incidence ratio bounds and approximate confidence intervals.

The point-estimates of the bounds are below zero (corresponding to no effect of the

treatment) for all three cases. However, the 95% CIs include zero for Sven and Ahmad;

thus, when both sampling uncertainty and identification-related uncertainty are taken into

account, one should not rule out the possibility that the treatment had no effect on their

problem behavior. The final row of Table 2 reports a fixed-effects meta-analysis of the

bounds, which yields estimates of the bounds on the mean of the log-incidence ratio across

the cases in the study. Given that the 95% CI for the average log-incidence ratio is

[-3.69,-1.23], it is possible to conclude that, on average, the treatment reduced the

incidence of disruptive behavior by more than 71%, and possibly as much as 97%. Even

based on conservative assumptions regarding the average behavioral event duration and

probability of short interim times, it is reasonable to conclude that this treatment is

effective for these three cases.

Method 3: A bound for changes in mean interim time

The first two methods make assumptions only about the mean event duration and

the probability of short interim times, but not about the full distribution of event
8The original investigators (or a meta-analyst with relevant clinical experience) would likely be able to

further refine these assumptions based on contextual information.
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durations or interim times. Entertaining a stronger set of distributional assumptions about

the behavior stream will yield narrower bounds for parameters of interest. For instance,

S. A. Altmann and Wagner (1970) proposed analyzing partial interval recording data under

the assumptions that events have zero duration and that interim times follow an

exponential distribution. Loosening the former assumption to allow for behaviors with

longer event durations leads to a method that can be used to evaluate changes in interim

time. Specifically, the assumptions described below imply a bound on the ratio of interim

times, which we define as λ0/λ1 so that its sign is consistent with the interpretation of

ratios of the other parameters.

Assume that the mean event durations in each sample are equal, so that µ0 = µ1, but

that this quantity is unknown. Further assume that the interim times in each sample follow

exponential distributions, so that Gs (x;λs) = 1− exp (−x/λs) for s = 0, 1. Denote the

logistic transformation as logit(x) = ln(x)− ln(1− x) and the complementary-log-log

transformation as cll(x) = ln(− ln(1− x)). If follows that

fL [E (Y0) ,E (Y1)] < ln
(
λ0

λ1

)
< fU [E (Y0) ,E (Y1)] , (10)

where the bounds are defined by the functions

fL(x, y) =


logit(y)− logit(x) if x > y

cll(y)− cll(x) if x ≤ y

fU(x, y) =


cll(y)− cll(x) if x > y

logit(y)− logit(x) if x ≤ y.

(11)

A proof is given in Appendix C. The bound involving the complementary-log-log

corresponds to the estimator proposed by S. A. Altmann and Wagner (1970), who assumed

µ0 = µ1 = 0. As the mean event duration increases, the implied value of the log of the

interim ratio approaches the log-odds ratio of the expected values in each sample. The

bounds will be narrow if E (Y0) and E (Y1) are either both near zero or are close to equal.
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Point-estimates for the bounds in (10) can be formed by substituting the sample

means for expectations, taking (f̂L, f̂U) = (fL (ỹ0, ỹ1) , fU (ỹ0, ỹ1)). The variance of (f̂L, f̂U)

is complicated by the fact that fL and fU are not smooth functions. Define the

large-sample variance of the log-odds ratio as

VLOR = s2
0

n0ỹ2
0 (1− ỹ0)2 + s2

1

n1ỹ2
1 (1− ỹ1)2 (12)

and the large-sample variance of the complementary-log-log ratio as

VCLR = s2
0

n0 (1− ỹ0)2 [ln (1− ỹ0)]2
+ s2

1

n1 (1− ỹ1)2 [ln (1− ỹ1)]2
. (13)

The variance of
(
f̂L, f̂U

)
can then be estimated as

VfL =


VLOR if cll (ỹ1)− cll (ỹ0) ≤ zα/2

√
VLOR

VCLR if cll (ỹ1)− cll (ỹ0) > zα/2
√
VLOR

VfU =


VCLR if cll (ỹ1)− cll (ỹ0) < −zα/2

√
VLOR

VLOR if cll (ỹ1)− cll (ỹ0) ≥ −zα/2
√
VLOR

(14)

A CI that covers the interval (fL, fU) (and thus the true log of the interim ratio) with

probability of approximately (1− α) is given by
[
f̂L − zα/2

√
VfL, f̂U + zα/2

√
VfU

]
.

Example 1, continued

Returning to the data from the study by Moes (1998), suppose that the investigators

are confident that the choice-making intervention did not alter the average length of the

participants’ disruptive behaviors. If it is further assumed that the interim times between

episodes of disruptive behavior are exponentially distributed, then the change in average

interim times can be quantified by using Method 3. Table 3 reports estimated bounds on

the log of the interim time ratio for each of the four cases, along with approximate 95%

CIs. The final row of the table reports fixed-effects meta-analyses based on the end-points

of the bounds. The average log-interim time across the four cases is estimated to be

between -2.26 and -2.08, equivalent to a 87-90% reduction in disruptive behavior. Based on



ANALYZING PIR DATA 21

the 95% confidence interval of [-3.01,-1.36] for the average-log interim ratio, which accounts

for sampling uncertainty in the bounds estimates, the treatment leads to a reduction of

74-95%. The narrow confidence interval suggests that one may be confident that the

treatment is very efficacious, on average, for these four cases. However, this is due in large

part to the strength of the parametric assumptions upon which Method 3 is premised.

Method 4: Moment estimators for prevalence and incidence

Method 3 introduced the assumption that interim times are exponentially

distributed, but made no assumption about the parametric form of event durations. A final

method for analyzing PIR data introduces a further parametric assumption for the event

time distribution, in order to obtain point estimates (rather than interval bounds) for the

parameters of the behavior stream. Specifically, it is assumed that the behavior stream

follows an Alternating Poisson Process, which is a special case of the ARP model where

both event durations and interim times follow exponential distributions. Under these

assumptions, expressions for both the mean and variance of PIR data can be obtained in

terms of the underlying parameters of the behavior stream. These expressions can be used

to form moment estimators for both prevalence and incidence (or equivalently, for the

mean event duration and the mean interim time).

Assume that the event durations and the interim times both follow exponential

distributions, so that Fs(x;µs) = 1− exp (−x/µs) and Gs(x;λs) = 1− exp (−x/λs). It

follows from (2) that

E (Ys) = 1− (1− φs) exp
(
−ζsc

(1− φs)

)
. (15)

It follows further that the variance of the PIR measurement is given by

Var (Ys) = E (Ys) [1− E (Ys)]
K

[
1 + 2φs

KE (Ys)

K−1∑
k=1

(K − k) exp
(
ζsc

φs
− ζskL

φs(1− φs)K

)]
. (16)

Appendix D provides a derivation of (16).

Moment estimators for prevalence and incidence are obtained for each s = 0, 1 by

replacing E (Ys) with ỹs in (15) and (16), replacing Var (Ys) with s2
s in (16), and solving
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both expressions for φs and ζs. The solution to these equations can be simplified by

profiling ζs. Let φ̂s and ζ̂s denote the moment estimators. For a given value of ỹs and φ̂s,

ζ̂s = −(1− φ̂s)
c

ln
(

1− ỹs
1− φ̂s

)
. (17)

Substituting (17) into (16), φ̂s is then the solution to

s2
s = ỹs (1− ỹs)

K

[
1 + 2φs

Kỹs

K−1∑
k=1

(K − k) exp
[(

kL

φscK
− 1− φs

φs

)
ln
(

1− ỹs
1− φs

)]]
. (18)

The moment estimators are well-defined for sample moments in the range 0 < ȳs < 1,

ȳs (1− ȳs) /K < s2
s < ȳs (1− ȳs). However, it is possible to obtain values of the sample

variance in the range 0 ≤ s2
s ≤ ȳs (1− ȳs)ns/ (ns − 1). To ensure that the estimators are

well-specified over the entire space of sample moments, we propose the following: if

s2
s ≤ ȳs (1− ȳs) /K then set φ̂s = 1/ (nsK) and ζ̂s = cll (ỹs); if s2

s ≥ ȳs (1− ȳs), then set

φ̂s = ỹs and ζ̂s = 0. Moment estimators of the mean event duration and mean interim time

are given by µ̂s = φ̂s/ζ̂s and λ̂s =
(
1− φ̂s

)
/ζ̂s, respectively.

It is quite difficult to obtain analytic expressions for the sampling variance of the

moment estimators. Bootstrap approaches (Efron & Tibshirani, 1998), including

non-parametric or parametric forms, provide an attractive alternative for obtaining

standard errors and constructing confidence intervals for parameters of interest. Appendix

E provides further details regarding the parametric bootstrapping procedure.

Simulation results

We conducted a simulation study to assess the performance of Method 4 over a wide

range of behavioral parameters (φs, ζs), intervals per observation session (K), and sample

sizes (ns).9 Even using a rather liberal criteria for bias and restricting attention to only

part of the parameter space, it appears that relatively large sample sizes are required in

order to obtain close to unbiased estimates of prevalence and incidence. In summarizing

our results, we describe the prevalence estimator as approximately unbiased when it is
9See the online supplementary materials for further details about the design and results of the simulation

study.
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within 5% of the true prevalence odds; similarly, we call the incidence estimator

approximately unbiased when it is within 5% of the true incidence. We restrict our analysis

to cases where new behaviors occur at a rate of between once every 20 intervals and once

every 2 intervals (i.e., 0.05/c < ζs < 0.50/c) and where the total duration of the behavior is

no more than half of the observation session (i.e., φs ≤ .50), because use of PIR recording

methods are probably unwarranted outside of these ranges. We consider several cases: first,

if prevalence is the only parameter of interest; second, if incidence is the only parameter of

interest; and finally, if both dimensions are of interest.

When prevalence is the primary parameter of interest, then a sample size of at least

ns = 16 is required in order to obtain approximately unbiased estimates over a substantial

portion of the parameter space. With ns = 16, the moment estimator produces

approximately unbiased estimates of prevalence for φs > .25 and ζs < 0.10/c (that is, for

new behaviors occurring no more than once per 10 intervals). With ns = 20, approximately

unbiased estimates are produced for φs > .25 and ζs < 0.15/c, which includes somewhat

higher values of incidence. As the number of intervals K increases, the range of ζs values

where unbiased estimates are obtained is reduced very slightly, while the range of φs values

increases very slightly.

If the primary parameter of interest is incidence, then a sample of at least ns = 20 is

the required in order to obtain approximately unbiased estimates for some portion of the

parameter space. However, the moment estimator is approximately unbiased across the full

range of true incidence values only within a narrow range of values for prevalence,

.05 ≤ φs ≤ .25. For very low values of prevalence (φs < .05), the moment estimator for

incidence remains close to unbiased only for smaller values of true incidence, ζs < 0.20/c.

Taken together, these results suggest that the moment estimator requires relatively

large sample sizes in order to obtain reasonable estimates of either prevalence or incidence.

Further, the subset of the parameter space where φs is well-estimated does not overlap with

the subset where ζs is well-estimated. Thus, the method should not be used if both
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dimensions of behavior are of interest.

Example 1, continued

Returning yet again to the data from the study by Moes (1998), we now assume that

the behavior streams followed an Alternating Poisson Process, in which both event

durations and interim times are exponentially distributed. We use Method 4 to estimate

change in the prevalence of disruptive behavior, as quantified by the log of the prevalence

ratio. Table 4 reports the results.10

The estimated log-prevalence ratios for Charles, Chuck, and James correspond to

reductions in prevalence of 97%, 66%, and 94%, respectively. For Carl’s data in the

no-choice condition, the moment estimator returned a boundary estimate for φ0, which we

have truncated to 1/(n0K). The leads to a large, positive estimate for the log-prevalence

ratio, a result that does not seem plausible. Given the small sample sizes in each condition

(n0 = n1 = 10), our simulation results suggest that the estimates may be biased in all four

cases. In particular, the mean outcomes in the choice condition are close to zero, well

outside of the range where we might expect to obtain reasonable estimates of prevalence.

This example illustrates a crucial drawback of using Method 4 to estimate changes across

conditions: even if prevalence (or incidence) in one condition is within the range where

approximately unbiased estimates can be obtained, it may not remain so in the other

condition.

Example 2, continued

Returning to the study by Dunlap et al. (1994), suppose that once again we assume

that the behavior streams followed an Alternating Poisson Process. We use Method 4 to

estimate change in the incidence of disruptive behavior, as quantified by the log of the

incidence ratio. Table 5 reports the results. The estimated log-incidence ratios for Ahmad,

Sven, and Wendall correspond to reductions in incidence of 13%, 51%, and 78%,
10We have not yet completed the code to obtain bootstrap variance estimates of phi and zeta; consequently,

we report only the point estimates, without confidence intervals.
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respectively. The estimated log-incidence ratio for Ahmad is outside the CI calculated with

Method 2, whereas the point estimates for Sven and Wendall lie within the CIs calculated

with Method 2. Just as with Example 1, our simulation results suggest that the estimates

may be biased due to the small sample size (n0, n1 < 16) in all three cases.

Discussion

Behavioral data collected using partial interval recording suffer from construct

invalidity because the resulting measurements are not readily interpretable in terms of the

underlying properties of the behavior; in short, PIR measures directly neither prevalence

nor incidence (J. Altmann, 1974; Mann et al., 1991). Using an alternating renewal process

model for the behavior stream, we have demonstrated that ignoring the construct invalidity

of PIR data can produce misleading inferences, such as inferring that an intervention

reduces the prevalence of an undesirable behavior when in fact it has the opposite effect.

We then proposed four different methods for analyzing PIR summary measurements, all of

which are based on the ARP model for the behavior stream, and all of which produce

estimates of interpretable behavioral parameters, such as the prevalence ratio or incidence

ratio.

All four methods rely on strong sets of assumptions about the behavior being

measured, and their use will this require credible prior information about the behavior.

The first method involves assuming that mean duration is greater than a known value,

which implies bounds for the behavior’s prevalence. For the resulting bound to be narrow

and informative, the assumed value for minimum duration must be large relative to the

active interval length. The second method involves assuming that the mean duration is less

than a known value and that interim times less than the active interval length occur only

rarely; together, these assumptions imply bounds for the behavior’s incidence. The shorter

the mean behavioral duration, and the smaller the maximum interim time probability, the

narrower will be the resulting bound.

Though Methods 1 and 2 both involve assumptions about certain aspects of the
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behavior stream, neither invokes assumptions regarding the parametric form of the event

duration or interim time distributions. In contrast, Methods 3 and 4 both involve assuming

that interim times follow an exponential distribution. Method 3 adds the further

assumption that the mean event duration is constant across samples, which implies a

relatively narrow bound for the ratio of two mean interim times. Method 4 instead adds

the assumption that event durations also follow an exponential distribution, which leads to

moment estimators for prevalence and incidence. While Methods 3 and 4 will tend to

produce more informative estimates than Methods 1 and 2, this advantage is due entirely

to the use of more restrictive, parametric assumptions. Such distributional assumptions

will be difficult to verify without detailed data on individual behavior streams.

Consequently, we recommend that Methods 1 and 2 should be privileged except when prior

evidence can be used to establish that the stronger modeling assumptions of Method 3 or 4

are reasonable.

Methods 1 and 2 require the analyst to specify thresholds (minimum or maximum

values) of certain parameters, which are then treated as known. One may naturally wonder

why we did not instead take a Bayesian approach, which naturally allows the analyst to

express prior uncertainty regarding model parameters. There are two reasons that we have

not yet formulated such an approach. The first is that Bayesian approaches require a full

likelihood model, but it is quite difficult to express or evaluate the likelihood of PIR

summary measurements.11 Approximate Bayesian methods (e.g. Turner & Van Zandt,

2012) might present a solution here and should be investigated further. The second, more

fundamental reason is that the analytic methods considered in this paper imply that

Bayesian analytic methods will be quite sensitive to the analyst’s choice of prior

specification. In particular, methods 1 and 2 suggest that PIR summary measurements

contain very little information about certain behavioral parameters, so that the results of a
11Note that even in the simple case of the Alternating Poisson Process, our analysis of Method 4 involves

only the first two moments, rather than the full likelihood.
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Bayesian analysis may be highly dependent on the quality of prior information.

All of the methods that we have described are based on the assumption that the PIR

measurements from a given sample are independently and identically distributed. In

between-subjects contexts, the assumption that the measurements are identically

distributed may not be reasonable if there is person-specific heterogeneity in the behavioral

parameters (i.e., variation in prevalence or incidence across individuals). In

repeated-measures contexts such as arise in single case designs, the independence

assumption is often considered unreasonable. Instead, recent discussions of statistical

methods for single-case research have emphasized the need to allow for simple forms of

auto-correlation (Horner et al., 2012).12 Methods 1 and 2 may be somewhat robust to

dependence in the data because they depend only on the first moment of the

measurements. So long as the dependence does not enter in such a way as to invalidate

Expression (2), the bounds that we have derived will remain valid; only the variance

estimation methods would need to be modified.

It would be useful to extend the proposed methods to handle regressions of PIR

measurements on predictor variables, such as time trends. However, such extensions appear

to be quite difficult. While Methods 1 and 2 could in principle be extended to handle

regression models, interval-bound regressions require specialized, complex estimation

techniques (Manski & Tamer, 2002). In the more highly parameterized Methods 3 and 4,

the behavioral parameters cannot be easily separated to formulate a generalized linear

model. If the analyst has access only to session-level PIR summary measurements, then the

very simple model that we have considered may stand near the limit of what is feasible.13

12However, empirical studies of auto-correlation in single-case research (e.g. Shadish, Rindskopf, Hedges,

& Sullivan, 2013) have generally relied on models with normally distributed errors, rather than models that

account for the properties of behavioral observation data. It remains to be seen whether auto-correlation

would remain a large concern if more appropriate models were used (Pustejovsky, 2013a).
13If the analyst has access to the individual interval-level data from a session, or what we have denoted

above as Usi1, ..., UsiK , then more flexible modeling strategies may be possible. We are currently exploring
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Despite the strength of the assumptions on which they are based, we nonetheless

believe that the methods described in this paper are an improvement over existing

methods, which simply ignore the construct invalidity of PIR data. Moreover, because each

method delineates the circumstances under which informative parameter estimates can be

obtained, the methods can be used to make more principled prospective decisions about

the use of PIR data. For example, if an investigator can obtain a rough estimate of the

mean duration of a certain behavior before measuring it using PIR, they might select an

active interval length so that the bound from Method 1 is relatively small. Similarly, an

investigator who wishes to obtain accurate estimates of both prevalence and incidence from

PIR measurements might choose a total sample size large enough for Method 4 to perform

well. Indeed, if the ARP is a reasonable model for the behavior under study, then we would

even suggest that the use of PIR for direct observation is only warranted if the investigator

can justify the assumptions of one of the methods that we have described. An investigator

who uses PIR in other circumstances risks being misled.

models for interval-level data (Pustejovsky, 2013b).



ANALYZING PIR DATA 29

References

Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour ,

49 (3/4), 227–267.

Altmann, S. A., & Wagner, S. S. (1970). Estimating rates of behavior from Hansen

frequencies. Primates, 11 (2), 181–183. doi: 10.1007/BF01731143

Ary, D., & Suen, H. K. (1983). The use of momentary time sampling to assess both

frequency and duration of behavior. Journal of Behavioral Assessment, 5 (2),

143–150.

Ayres, K., & Gast, D. L. (2010). Dependent measures and measurement procedures. In

D. L. Gast (Ed.), Single subject research methodology in behavioral sciences (pp.

129–165). New York, NY: Routledge.

Dunlap, G., DePerczel, M., Clarke, S., Wilson, D., Wright, S., White, R., & Gomez, A.

(1994). Choice making to promote adaptive behavior for students with emotional and

behavioral challenges. Journal of Applied Behavior Analysis, 27 (3), 505–518.

Durand, V. M., Hieneman, M., Clarke, S., Wang, M., & Rinaldi, M. L. (2012). Positive

Family Intervention for Severe Challenging Behavior I: A Multisite Randomized

Clinical Trial. Journal of Positive Behavior Interventions, 15 (3), 133–143. doi:

10.1177/1098300712458324

Efron, B., & Tibshirani, R. J. (1998). An Introduction to the Bootstrap. Boca Raton, FL:

Chapman & Hall/CRC.

Fienberg, S. E. (1972). On the use of Hansen frequencies for estimating rates of behavior.

Primates, 13 (3), 323–325.

Hartmann, D. P., & Wood, D. D. (1990). Observational methods. In A. S. Bellack,

M. Hersen, & A. E. Kazdin (Eds.), International handbook of behavior modification

and therapy (2nd ed., pp. 107–138). New York, NY: Plenum Press.

Horner, R. H., Carr, E. G., Halle, J., McGee, G., Odom, S. L., & Wolery, M. (2005). The

use of single-subject research to identify evidence-based practice in special education.



ANALYZING PIR DATA 30

Exceptional Children, 71 (2), 165–179.

Horner, R. H., Swaminathan, H., Sugai, G., & Smolkowski, K. (2012). Considerations for

the systematic analysis and use of single-case research. Education and Treatment of

Children, 35 (2), 269–290. doi: 10.1353/etc.2012.0011

Kazdin, A. E. (2011). Single-Case Research Designs: Methods for Clinical and Applied

Settings. New York, NY: Oxford University Press.

Kraemer, H. C. (1979). One-zero sampling in the study of primate behavior. Primates,

20 (2), 237–244.

Kulkarni, V. G. (2010). Modeling and Analysis of Stochastic Systems. Boca Raton, FL:

Chapman & Hall/CRC.

Landa, R. J., Holman, K. C., O’Neill, A. H., & Stuart, E. A. (2011). Intervention targeting

development of socially synchronous engagement in toddlers with autism spectrum

disorder: A randomized controlled trial. Journal of child psychology and psychiatry,

and allied disciplines, 52 (1), 13–21. doi: 10.1111/j.1469-7610.2010.02288.x

Mann, J., Ten Have, T. R., Plunkett, J. W., & Meisels, S. J. (1991). Time sampling: A

methodological critique. Child Development, 62 (2), 227–241.

Manski, C. F., & Tamer, E. (2002). Inference on regressions with interval data on a

regressor or outcome. Econometrica, 70 (2), 519–546.

Moes, D. R. (1998). Integrating choice-making opportunities within teacher-assigned

academic tasks to facilitate the performance of children with autism. Research and

Practice for Persons with Severe Disabilities, 23 (4), 319–328.

Mudford, O. C., Taylor, S. A., & Martin, N. T. (2009). Continuous recording and

interobserver agreement algorithms reported in the Journal of Applied Behavior

Analysis (1995-2005). Journal of Applied Behavior Analysis, 42 (1), 165–169. doi:

10.1901/jaba.2009.42-165

Pustejovsky, J. E. (2013a). Measurement-comparable effect sizes for single-case studies of

free operant behavior. Psychological Methods, (In press).



ANALYZING PIR DATA 31

Pustejovsky, J. E. (2013b). Observation procedures and Markov chain models for

estimating the prevalence and incidence of a behavior. Poster presented at the annual

meeting of the American Educational Research Association, San Francisco, CA.

Quera, V. (1990). A generalized technique to estimate frequency and duration in time

sampling. Behavioral assessment, 12 (4), 409–424.

Rapp, J. T., Colby-Dirksen, A. M., Vollmer, T. R., Roane, H. S., Lomas, J., & Britton,

L. N. (2007). Interval recording for duration events: A re-evaluation. Behavioral

Interventions, 22 , 319–345.

Rogosa, D., & Ghandour, G. (1991). Statistical models for behavioral observations.

Journal of Educational Statistics, 16 (3), 157–252.

Shadish, W. R., Rindskopf, D. M., & Hedges, L. V. (2008). The state of the science in the

meta-analysis of single-case experimental designs. Evidence-Based Communication

Assessment and Intervention, 2 (3), 188–196. doi: 10.1080/17489530802581603

Shadish, W. R., Rindskopf, D. M., Hedges, L. V., & Sullivan, K. J. (2013). Bayesian

estimates of autocorrelations in single-case designs. Behavior Research Methods,

45 (3), 813–821. doi: 10.3758/s13428-012-0282-1

Suen, H. K., & Ary, D. (1986). A post hoc correction procedure for systematic errors in

time-sampling duration estimates. Journal of Psychopathology and Behavioral

Assessment, 8 (1), 31–38. doi: 10.1007/BF00960870

Turner, B. M., & Van Zandt, T. (2012). A tutorial on approximate Bayesian computation.

Journal of Mathematical Psychology, 56 (2), 69–85. doi: 10.1016/j.jmp.2012.02.005

Volpe, R., DiPerna, J., Hintze, J., & Shapiro, E. (2005). Observing students in classroom

settings: A review of seven coding schemes. School Psychology Review, 34 (4),

454–474.



ANALYZING PIR DATA 32

Table 1

Estimated bounds for the log of the prevalence ratio for cases from Moes (1998), based on

Method 1

Case ȳ0 s0 ȳ1 s1 Estimate 95% CI

Carl 0.14 0.03 0.04 0.11 (-1.92,-0.53) [-3.69,1.24]

Charles 0.35 0.20 0.01 0.03 (-4.12,-2.74) [-5.56,-1.30]

Chuck 0.27 0.15 0.09 0.13 (-1.81,-0.42) [-2.80,0.57]

James 0.50 0.17 0.03 0.09 (-3.50,-2.12) [-5.39,-0.24]

FE meta-analysis (-2.58,-1.20) [-3.27,-0.51]
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Table 2

Estimated bounds for the log of the incidence ratio for cases from Dunlap et al. (1994),

based on Method 2

Case n0 ȳ0 s0 n1 ȳ1 s1 Estimate 95% CI

Ahmad 8 0.70 0.18 8 0.02 0.02 (-4.19,-2.48) [-4.72,-1.96]

Sven 15 0.36 0.19 6 0.09 0.10 (-2.20,-0.49) [-3.07,0.39]

Wendall 10 0.26 0.12 11 0.06 0.07 (-2.24,-0.64) [-3.01,0.12]

FE meta-analysis (-3.30,-1.62) [-3.69,-1.23]
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Table 3

Estimated bounds for the log of the interim ratio for cases from Moes (1998), based on

Method 3

Case Estimate 95% CI

Carl (-1.33,-1.28) [-3.18,0.57]

Charles (-3.85,-3.63) [-5.36,-2.16]

Chuck (-1.34,-1.23) [-2.47,-0.17]

James (-3.47,-3.12) [-5.44,-1.20]

FE meta-analysis (-2.26,-2.08) [-3.01,-1.36]
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Table 4

Estimates for cases from Moes (1998), based on Method 4

Prevalence Incidence (per interval)

Case No Choice Choice log-ratio No Choice Choice log-ratio

Carl 0.00 0.04 3.43 0.15 0.00 -4.61

Charles 0.33 0.01 -3.63 0.02 0.00 -2.02

Chuck 0.25 0.08 -1.09 0.02 0.01 -1.54

James 0.46 0.03 -2.79 0.03 0.00 -3.24
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Table 5

Estimates for cases from Dunlap et al. (1994), based on Method 4

Prevalence Incidence (per interval)

Case No Choice Choice log-ratio No Choice Choice log-ratio

Ahmad 0.68 0.00 -5.78 0.03 0.03 -0.14

Sven 0.33 0.08 -1.42 0.03 0.01 -0.72

Wendall 0.19 0.05 -1.43 0.07 0.02 -1.52
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(a) Simulated single-case graph using 15 s partial interval recording.
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(b) Simulated single-case graph using continuous recording.

Figure 1 . Example of partial interval recording with a state behavior.
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(b) Expected proportion of intervals as a function of active interval length.

Figure 2 . Example of partial interval recording with a discrete behavior. Solid red lines

correspond to the distribution prior to intervention. Dashed blue line correspond to the

distribution after intervention.
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Appendix A

A bound for prevalence

Denote the expected value of the partial interval measurements in each sample as

E (Ys) = πs. The interim time distribution Gs(x;λs) is bounded between 0 and 1, by which

it follows that

0 ≤
∫ c

0
[1−Gs(x;λs)] dx ≤ c. (19)

Substituting (19) into (2) leads to

φs ≤ πs ≤ φs + ζsc. (20)

The right inequality in (3) follows. Assume that 0 < µ∗L < µs for a known value µ∗.

Multiplying (20) by µ∗L/(µ∗L + c) and noting that φs = µsζs,

µ∗Lπs
µ∗L + c

≤ φs −
cφ

µ∗L + c
+ µ∗Lζc

µ∗L + c
= φs −

cζs (µs − µ∗L)
µ∗L + c

≤ φs, (21)

which demonstrates the left inequality in (3).
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Appendix B

A bound for incidence

Assume that µs ≤ µ∗U for known µ∗U . From the right side of (20), πs ≤ φs + ζsc. Dividing by

µ∗U + c and noting that φs = µsζs,

πs
µ∗U + c

≤ µs + c

µ∗U + c
ζs ≤ ζs, (22)

which demonstrates the left inequality in (8). Now assume that G(x;λs) < p for known p.

It follows that

(1− p)c ≤
∫ c

0
[1−Gs(x;λs)] dx. (23)

Substituting (23) into (2) leads to

πs ≥ φs + ζs(1− p)c ≥ ζs(1− p)c. (24)

The right inequality in (8) follows after dividing by (1− p)c.
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Appendix C

A bound for the log-interim ratio

Assume that µ0 = µ1 = µ and that Gs(x;λs) = 1− exp (−x/λs) for s = 0, 1. It follows from

(2) that πs = 1− λs exp (−c/λs) / (µ+ λs). For fixed πs, write

µ = f (λs, πs) = λs exp (−c/λs)
1− πs

− 1

with inverse λs = f−1 (µ, πs). Observe that

lim
µ→0

f−1 (µ, πs) = c

− ln (1− πs)

lim
µ→∞

f−1 (µ, πs)
µ

= lim
µ→∞

1− πs
exp [−c/f−1 (µ, πs)]− 1 + πs

= 1− πs
πs

,

(25)

Denote the log-interim ratio as ωλ = ln (λ0/λ1) and note that it can be written as

ωλ(µ, π0, π1) = ln f−1 (µ, π0)− ln f−1 (µ, π1) .

It follows from (25) that

lim
µ→0

ωλ(µ, π0, π1) = cll(π1)− cll(π0)

lim
µ→∞

ωλ(µ, π0, π1) = logit(π1)− logit(π0).
(26)

Next, note that the derivative of ωλ with respect to µ is

∂ωλ

∂µ
= 1
λ0∂f(λ0, π0)/∂λ0

− 1
λ1∂f(λ1, π1)/∂λ1

= λ0

cµ+ (µ+ c)λ0
− λ1

cµ+ (µ+ c)λ1
. (27)

Also note that
∂f−1 (µ, πs)

∂πs
= −λs(µ+ λs)2

[cµ+ (µ+ c)λs] exp(−c/λs)
< 0. (28)

Now suppose that π0 > π1. It follows from (28) that λ0 < λ1, from (27) that ωλ is strictly

decreasing in µ, and from (26) that

logit(π1)− logit(π0) < ωλ < cll(π1)− cll(π0). (29)
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Similarly, π0 ≤ π1 implies that

cll(π1)− cll(π0) < ωλ < logit(π1)− logit(π0). (30)

The limits given in (10) follow.
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Appendix D

Variance of PIR data

This appendix provides a derivation of the variance of a PIR measurement given in (16),

under the assumption that both the event durations and the interim times are

exponentially distributed (i.e., an alternating Poisson process model). Let Z(t) = 1

indicate that an event is occurring at time t and Z(t) = 0 indicate that no event is

occurring at time t. Formally,

Z(t) =
J∑
j=1

I

0 ≤ t−
j−1∑
i=1

(Ai +Bi) < Aj

 .
Under the alternating Poisson process, Z(t) is a continuous time Markov chain, having the

property that

Pr(Z(s+ t) = 1|Z(s) = a, Z(r) : 0 ≤ r < s) = Pr(Z(s+ t) = 1|Z(s) = a) (31)

= Pr(Z(t) = 1|Z(0) = a)

for a ∈ {0, 1} and s, t ≥ 0 (Kulkarni, 2010, Thm. 6.1). Denote the transition probabilities

of this continuous time Markov chain by

p0(t) = Pr(Z(t) = 1|Z(0) = 0) = φ
(
1− e−ρt

)
(32)

p1(t) = Pr(Z(t) = 1|Z(0) = 1) = (1− φ)e−ρt + φ, (33)

(ibid., Equation 6.17, p. 207) where the alternate parameterization ρ = 1
µ

+ 1
λ

= ζ
φ(1−φ) is

employed for ease of notation. Under the assumption that the process is in equilibrium,

Pr (Z(t) = 1) = φ for any fixed t.

The variance of the Y is derived by evaluating Cov(Uh, Uk) for 1 ≤ h < k ≤ K. Let

t0 = (h− 1)L/K denote the beginning of the hth interval, t1 = t0 + c denote the end of the

active portion of the hth interval, and t2 = (k − 1)L/K denote the beginning of the kth
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interval. Observe that

Pr (Z(t1) = 1, Uh = 1|Z(t0) = 1) = Pr (Z(t1) = 1|Z(t0) = 1)

= p1(c) = (1− φ)e−ρc + φ,

Pr (Z(t1) = 1, Uh = 1|Z(t0) = 0) = Pr(Z(t1) = 1 ∩ Z(s) = 1, t0 ≤ s < t1|Z(t0) = 0)

=
∫ c

0
p1 (c− x) [1− exp (−φρx)] dx

= φ
(
1− e−ρc

)
.

Thus,

Pr (Z(t1) = 1 ∩ Uh = 1) = φPr (Z(t1) = 1, Uh = 1|Z(t0) = 1)

+ (1− φ) Pr (Z(t1) = 1, Uh = 1|Z(t0) = 0) = φ

Pr (Z(t1) = 1|Uh = 1) = φ

1− (1− φ)e−ρφc .

Conditioning on Z(t1),

Pr (Z(t2) = 1|Uh = 1) = Pr (Z(t1) = 0|Uh = 1) p0(t2 − t1)

+ Pr (Z(t1) = 1|Uh = 1) p1(t2 − t1)

= φ+ φ(1− φ)e−ρ(t2−t1)−ρφc

1− (1− φ)e−ρφc .

Now conditioning on Z(t2),

Pr (Uk = 1|Uh = 1) =
1∑

a=0
Pr (Z(t2) = a|Uh = 1)Pr (Uk = 1|Z(t2) = a)

= 1− e−ρφc + e−ρφc Pr (Z(t2) = 1|Uh = 1)

= 1− (1− φi)e−ρφc + φ(1− φ)e−ρ(t2−t1)−2ρφc

1− (1− φ)e−ρφc .

It therefore follows that

Cov(Uh, Uk) = Pr(Uh = 1) [Pr (Uk = 1|Uh = 1)− Pr(Uk = 1)]

= φ(1− φ) exp [−ρ(k − h)L/K − (2φ− 1)ρc] .
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Thus,

Var (Y ) = 1
K

Var(U1) + 2
K2

K−1∑
k=1

(K − k)Cov(U1, Uk+1)

= E (Y ) [1− E (Y )]
K

×
[
1 + 2φe(1−φ)ρc

KE (Y )

K−1∑
k=1

(K − k) exp
(
−ρkL
K

)]
.

Expression (16) follows by substituting ζ
φ(1−φ) for ρ and rearranging terms. Note that the

derivation of this expression depends strongly on the independence of increments in the

alternating Poisson process; this inhibits generalizations to alternating renewal processes

based on event duration and interim time distributions other than the exponential.
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Appendix E

Parametric bootstrap procedure for the Alternating Poisson Process

This appendix describes a parametric bootstrapping procedures for obtaining standard

errors and confidence intervals for the moment estimators in Method 4. The parameter of

interest θ is assumed to be some function of the behavior stream parameters,

θ = f (φ0, ζ0, φ1, ζ1), so that the moment estimator θ̂ is calculated by replacing the

parameters with corresponding moment estimators. For example, a moment estimator for

the prevalence ratio is θ̂ = φ̂1/φ̂0.

A parametric bootstrapping procedure with R replications involves the following:

1. For each s = 0, 1, simulate R× ns behavior streams that follow an Alternating

Poisson Process with mean event duration µ̂s and mean interim time λ̂s.

2. For each of the simulated behavior streams, apply the PIR procedure to generate

summary measurements, Y r
s1, ..., Y

r
sns

, for r = 1, ..., R and s = 0, 1. Calculate the sample

mean and sample variance, ỹrs and (srs)
2, for r = 1, ..., R and s = 0, 1.

3. Solve for the moment estimators based on each set of simulated sample moments,

yielding estimates
(
φ̂rs, ζ̂

r
s

)
for r = 1, ..., R and s = 0, 1. Calculate an estimate for the

parameter of interest θ̂r = f
(
φ̂r0, ζ̂

r
0 , φ̂

r
1, ζ̂

r
1

)
.

4. The sampling variance of θ̂ can be estimated by taking the variance over the

bootstrap replicates θ̂1, ..., θ̂R. A (1− α) CI for θ̂ can be formed by taking the α/2 and

1− α/2 sample quantiles of the bootstrap replicates.


