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Abstract
Partial interval recording is a procedure for collecting measurements 

based on direct observation of behavior. It is used in several areas of 

educational and psychological research, particularly in connection with 

single-case research. Measurements collected using partial interval 

recording suffer from construct invalidity because they are not readily 

interpretable in terms of the underlying properties of the behavior. Using 

an alternating renewal process model for the behavior under observation, 

we demonstrate that ignoring the construct invalidity of PIR data can 

produce misleading inferences, such as inferring that an intervention 

reduces the prevalence of an undesirable behavior when in fact it has the 

opposite effect. We then propose four different methods for analyzing PIR 

summary measurements, all of which produce estimates of interpretable 

behavioral parameters. 

Background & Goals

• Direct observation of behavior is used extensively in certain areas of 

education and psychological research. It is considered a hallmark of 

single-case research.

• Aspects of behavior that are often of interest include:

• Prevalence: the proportion of time that a behavior occurs;

• Incidence: the rate at which behavioral events occur.

• Procedures for recording observations include continuous recording, event 

counting, momentary time sampling, partial interval recording (PIR).

• PIR measures neither prevalence nor incidence (Altman, 1974; Kraemer, 

1979; Mann et al., 1991), yet remains in wide use within single-case 

reseach (Mudford, Taylor, & Martin, 2009; Rapp et al., 2007).

• Few analytic methods for PIR data account for its construct invalidity.

• Altmann & Wagner (1970) suggest complementary-log-log 

transformation, but this is only valid under Poisson process.

• Other methods (Suen & Ary, 1986; Quera, 1990; Pustejovsky, 2013) 

require access to within-session data rather than just summary 

measurements.

• Our goal is to develop methods for analyzing PIR data that are framed in 

terms of underlying behavioral characteristics and that account for the 

construct invalidity of the measurements.

The behavior stream
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Partial Interval Recording (PIR)

• Divide session into K intervals, each of length c. 

• For each interval, observer records whether behavior occurred 

at any point during the interval.

• Calculate the proportion of intervals with behavior: 

Y = (# Intervals with behavior) / K
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Common modeling assumptions

Consider a study in which there are two samples of PIR measurements, of size 

n0 and n1, respectively. Let Ysi denote the measurement from session i in 

sample s. We model the behavior stream by an equilibrium alternating renewal 

process. Specifically, we assume that:

1. Event durations from session i in sample s are iid draws from a distribution 

with mean μs and cumulative distribution Fs(x; μs). 

2. Interim times from session i in sample s are iid draws from a distribution 

with mean λs and cumulative distribution Gs(x; λs). 

3. Event durations and interim times are mutually independent.

4. The process is aperiodic and in equilibrium.

Under these assumptions:

• ϕs = μs / (μs + λs) is the prevalence of the behavior in sample s.

• ζs = 1 / (μs + λs) is the incidence of the behavior in sample s.

• The expected value of a PIR measurement is
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Ignoring the problem

Consider a single-case study evaluating the effect of a teaching technique on 

the disruptive behavior of a student. The goal is to estimate/test change in 

prevalence. 

• Study uses an ABAB design with 15-s PIR.

• Prior to intervention, F0(x) = Γ(x; 2,3), μ0 = 6, G0(x) = Γ(x; 3,4), λ0 = 12, 

and prevalence is ϕ0 = 1 / 3.

• After intervention, F1(x) = Γ(x; 2,10), μ1 = 20, G1(x) = Γ(x; 3,10), λ1 = 30, 

and prevalence is ϕ1 = 2 / 5.

• True prevalence has increased by 20% (i.e., the intervention is harmful).

• Yet 15-s PIR gives the impression that the intervention is effective in 

decreasing the prevalence of disruptive behavior.

• Similar examples can be found when the behavior has very short duration 

and the goal is to estimate changes in incidence.
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Method 1: Long event durations

The upward bias of PIR as a measure of prevalence will be smaller if the 

average event duration is relatively long compared to the interval length. 

Formally, assume that μ0, μ1 ≥ μmin for known μmin. Then

It follows that an approximate 95% CI for the log-prevalence ratio is

Example 1: Moes (1998) used an ABAB/BABA design to evaluate effects of 

providing choice-making opportunities during homework tutoring on the 

disruptive behavior of four autistic students. Behavior was measured with 10 s 

PIR for n0 = n1 = 10 sessions in each condition. We assume μmin = 10 s.
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Case y0 s0 y1 s1

95% CI for log-

prevalence ratio

Carl 0.14 0.03 0.04 0.11 [-3.69, 1.24]

Charles 0.35 0.20 0.01 0.03 [-5.56, -1.30]

Chuck 0.27 0.15 0.09 0.13 [-2.80, 0.57]

James 0.50 0.17 0.03 0.09 [-5.39, -0.24]

FE Meta-analysis [-3.27, -0.51]
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Target parameters

The goal is to compare behavioral 

characteristics between the two 

samples. We focus on comparisons 

in the form of log-ratios:

• Log-prevalence ratio: ln(ϕ1 / ϕ0)

• Log-incidence ratio: ln(ζ1 / ζ0)

• Log-interim ratio: ln(λ0 / λ1)

Method 2: Short events, long interim times

PIR is sometimes also used in contexts where individual behavioral events are 

short. In this circumstance, if the interim times between events tend to be 

longer than the active interval length, then the number of intervals with 

behavior will closely approximate the total number of events. Formally, 

assume that that μ0, μ1 ≤ μmax for known μmax and that Gs(c; λs) ≤ p for s = 0, 1 

and known p < 1. Then

It follows that an approximate 95% CI for the log-incidence ratio is

Example 2: Dunlap et al. (1994) used an ABAB/ABA design to evaluate the 

effects of providing choice between academic activities on the disruptive 

behavior of three elementary school students with emotional and behavioral 

disorders. Behavior was measured with 10 s PIR for Sven and Ahmad and 15 s 

for the Wendell. We assume p = .15 for Sven and Ahmad and p = .25 for 

Wendell, and that μmax = 10s for all three.
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Method 3: Constant mean event duration, 

exponential interim time distribution

The first two methods make assumptions only about the mean event duration 

and the probability of short interim times, but not about the full distribution 

of event durations or interim times. Entertaining stronger distributional 

assumptions about the behavior stream will yield narrower bounds for 

parameters of interest. Specifically, assume that 

• mean event durations in each sample are equal, μ0 = μ1 and

• interim times in each sample follow exponential distributions.

It follows that

where

These bounds can be estimated by substituting sample means for the 

expectations. See the conference paper for details regarding variance 

estimation and confidence interval construction.

Example 1 continued: Returning to the study by Moes (1998), we assume 

the investigators are confident the that the choice-making intervention did not 

alter the average length of the participant’s disruptive behavior. We further 

assume that the interim times between behaviors are exponentially 

distributed.

Statistics & notation
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Method 4: Moment estimators based on an 

Alternating Poisson Process

The first three methods all involve bounds (rather than point estimates) for 

the target parameters. Yet stronger parametric assumptions are required to 

obtain point estimates. Assume that the behavior stream follows an 

Alternating Poisson Process, in which event durations and interim times 

both follow exponential distributions (with separate means). It follows that

Moment estimators for prevalence and incidence can be obtained for each s

= 0,1 by replacing the expectation and variance with corresponding sample 

moments, then solving for ϕs and ζs. Variance estimates and confidence 

intervals can be obtained via parametric bootstrapping.

Examples 1& 2 continued:  Returning to the studies by Moes (1998) and 

Dunlap et al. (1994), we assume that the behavior streams follow an 

Alternating Poisson Process.
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Case n0 y0 s0 n1 y1 s1 
95% CI for log-

incidence ratio 

Ahmad 8 0.7 0.18 8 0.02 0.02 [-4.72, -1.96]

Sven 15 0.36 0.19 6 0.09 0.1 [-3.07, 0.39]

Wendall 10 0.26 0.12 11 0.06 0.07 [-3.01, 0.12]

FE Meta-analysis [-3.69, -1.23]

Case

Prevalence estimates Incidence estimates (per interval)

No 

Choice
Choice log-ratio 95% CI

No 

Choice
Choice log-ratio 95% CI

Moes (1998)

Carl 0.001 0.039 3.429 [-6.137,  4.446] 0.146 0.001 -4.610 [-5.154, -2.828]

Charles 0.329 0.009 -3.631 [-8.308, -2.403] 0.019 0.003 -2.019 [-3.446, -0.617]

Chuck 0.247 0.084 -1.085 [-2.665, -0.203] 0.024 0.005 -1.541 [-3.050, -0.222]

James 0.465 0.029 -2.787 [-8.346, -1.559] 0.035 0.001 -3.244 [-4.422, -1.599]

Dunlap et al. (1994)

Ahmad 0.676 0.002 -5.783 [-9.750, -3.500] 0.029 0.025 -0.143 [-2.177,  0.897]

Sven 0.333 0.081 -1.420 [-3.197, -0.617] 0.029 0.014 -0.716 [-2.091,  0.815]

Wendell 0.188 0.045 -1.428 [-2.885, -0.200] 0.071 0.016 -1.522 [-2.900, -0.387]

Case 
Estimate bounds for 

log-interval ratio

95% CI for log-

interval ratio 

Carl (-1.33, -1.28) [-3.18, 0.57]

Charles (-3.85, -3.63) [-5.36, -2.16]

Chuck (-1.34, -1.23) [-2.47, -0.17]

James (-3.47, -3.12) [-5.44, -1.20]

FE Meta-analysis (-2.26, -2.08) [-3.01, -1.36]


