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Regression with dependent errors

e Cluster-randomized trials

* Angrist & Lavy (2009) studied effects of monetary incentives on passing
rates for high school exit exams in Israel

* Difference-in-differences/panel data models

 Carpenter & Dobkin (2011) examined effects of changing minimum legal
drinking age on motor vehicle fatalities.

 Effects identified by state-level changes in drinking age over time (state-
by-year panel).

* Regression discontinuity designs

e Cortez, Goodman, & Nomi (2015) evaluate effects of double-dose algebra
program on students math achievement and educational attainment.

* Lee & Card (2008) recommend clustering on unique values of the forcing
variable to address specification error.



Cluster-robust variance estimation

* Method for estimating sampling variance of regression
coefficients when error structure is unknown

* Assuming that the data includes G independent clusters of observations.
* White (1984); Arellano (1987); Liang & Zeger (1986)

e Valid (asymptotically consistent) when the number of clusters
(G) is large.

* But can misbehave with few clusters (Cameron & Miller, 2015;
Imbens & Kolesar, 2015)
e Standard errors that are too small
* Hypothesis tests with inflated type-| error rates
* And it can be hard to tell if your G is big enough



In brief...

e McCaffrey, Bell, & Botts (2001; Bell & McCaffrey, 2002) proposed
“bias-reduced linearization” variance estimator (BRL)
* Improves bias of standard errors for small G
* t-tests with Satterthwaite degrees of freedom

* Our work:
e Extends BRL so that it works in models with fixed effects
* Develops an F-test for multi-parameter hypothesis tests
* Provides easy-to-use software implementation in R

* With our extensions, BRL is a general and “production-ready”
approach to cluster-robust hypothesis testing.



Today

e “standard” CRVE

* Bias-reduced linearization
o Satterthwaite t-tests

* Our extensions
* F-tests
* Handling fixed effects
* Software



The model

» Suppose we have a regression model

Yj = Xj[}+ej
where

*j=1,..,G clusters
* Errors have unknown variance Var(e)=®, forj = 1,...,G clusters.

* X might include
* Policy indicators
* Demographic controls
* Fixed effects (for clusters, time periods, etc.)

* For today, I'll assume that regression is estimated by ordinary
least squares.



Hypotheses

* Our goal will be to test hypotheses about elements of 8

* Does an intervention have non-zero effects on the outcome?

H,: £, =0

* Do the intervention effects vary across contexts?

Hot Bi="=f, =0



Standard cluster-robust variance estimation

* OLS coefficient estimates have (unknown) sampling variance
n -1
Var(ﬁ) =(X'X) [

» Standard CRVE (sandwich estimator):

G 1
X\® X, ](th)
=1

j




Standard robust hypothesis tests

* Robust t-test (H,: B; = 0)

tCR ::éll 1C1:R ( éJ[(G_l)

* Robust (Wald-type) F-test (H,: CB = O for g x p matrix C)

Fer :%(Cﬁ)t (CVCRC)-l(Cﬁ) Fer = F (q,G —1)



Performance of standard tests
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Bias-reduced linearization



Bias-reduced linearization

* McCaffrey, Bell, & Botts (2001) proposed a correction to VR
based on a working model for the error covariance structure.

* Given a working model, seek a variance estimator such that

E(Ve*) :Var(ﬁ)

* The corrected variance estimator is o P

V=00 A <xtx>““*‘f%‘%5f.. o

.-

5. 3

with adjustment matrices A,...,A; chosen to satls&B
criterion.



Working models

* “Working independence”, with @, = |,
oL ~1/2
A :[Ij =X, (X'X) xJ}

|H

* “Working random effects mode

t
(I)j = ,oljlj +(1—,0)Ij

aSsumes

* Remarkably, the working model doesn’t matter much.
* BRL greatly reduces bias even if the working model is far from the truth.
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Hypothesis tests

* We could use VBRLin robust t and F statistics, but...
* Bias of variance estimator is only part of the problem
* t(G-1), F(q, G — 1) often poor approximations for reference distributions

* For t-tests, Bell and McCaffrey (2002) propose to use t(v)
reference distribution, with Satterthwaite degrees of freedom

v=[E (V" )]2  Var (V™)

with expectation and variance estimated based on the working
model.
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Pustejovsky & Tipton (2016) addresses
three outstanding problems with BRL
* BRL adjustments in models with lots of fixed effects

* Testing multi-parameter hypotheses
 Software availability




Handling fixed effects models

* Consider state-by-year panel data model
Vi =XiB+7i +& +€;

* Common to treat y, ¢, as fixed effects, estimate B by OLS.
» Use CRVE to allow for further correlation among errors within each state.

* BRL breaks in this model (Angrist & Pischke, 2009; Young, 2016).

* We demonstrate that the Moore-Penrose generalized inverse
can be used to construct adjustment matrices that are still
unbiased under the working model.
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Approximate Hotelling Test

* We propose a generalization of the Satterthwaite approximation
to the multi-dimensional case.

» Approximate the distribution of V&Rt using a Wishart distribution
with degrees of freedom n and |, scale matrix.

* Estimate n by matching mean and total variation of VERL,

=g+l A\ BRL~\ L [~
Fo = o (CB) (cv®™c) (cB)

Fanr = F(q’ﬂ_q‘”-)
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AHT maintains close-to-nominal a
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Q
9 T T T T T T T T T T T T
g m=15 m=30 m=50 m=15 m=30 m=50 m=15 m=30 m=50 m=15 m=30 m=50
g Standard test, g = 1 Standard test, g = 2 Standard test, g = 3 Standard test, g = 6
o
a4
0.15_ 03_ 0.6'
0.10
0.10- 0.2- 0.4-
0.057 *
0.05 0.1 0.2
0.00 0.00 0.01 0.0

m=15 m=30 m=50 m=15 m=30 m=50 m=15 m=30 m=50 m=15 m=30 m=50

18



Software

* R package clubSandwich
* https://github.com/jepusto/clubSandwich

* Currently under active development
* Goal is to release to CRAN by 8/1

* Works with a wide variety of fitted models
* Im models: Ordinary/weighted least squares
* p1m package: Fixed-effects/random-effects panel models
 nlme package: GLS and HLM models
* Meta-analysis (netafor and robumeta packages)
* Other packages that would be useful?

19


https://github.com/jepusto/clubSandwich

Angrist & Lavy (2009)

* Cluster-randomized trial in 40 high schools in Israel.

* Tested effects of monetary incentives on post-secondary
matriculation exam (Bagrut) completion rates.

* Longitudinal data, D-in-D specification.
* Focus on effects for higher-achieving girls

Hypothesi —nm

treatment effect Standard 5.746 34.00
(a=1) Satterthwaite 5.169 18.13  .035
Moderation by Standard 3.186 34.00 .054

school sector (q=2) aHT 1.665 7.84 250
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Carpenter & Dobkin (2011)

e Study effects of changing minimum legal drinking age on motor

vehicle mortality

e State-by-year panel from FARS maintained by NHTSA.

e Difference-in-differences identification.

Hypothesis —nm

Standard 9.660
Policy effect (q =1)
Satterthwaite 9.116

Hausman test of Standard 2.930
endogeneity (q=2) AHT 7 560

49.00
24.58
49.00
11.91

.006
.063
119
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Conclusions

 Standard tests based on CRVE do not perform well with few or
even a moderate number of clusters.

* It can be difficult to tell whether you have enough clusters to
trust standard methods because it depends on
* The hypothesis being tested.
* The structure of the covariates in the model.

e Satterthwaite t-test/AHT F-test perform well across a broad
range of applications. We recommend that they be used by

default.



Thank you

e pusto@austin.utexas.edu
* http://jepusto.github.io/
* Working paper available at http://arxiv.org/abs/1601.01981
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Future work

e Compare BRL + AHT to other recent proposals
* Cluster-wild bootstrap (Webb & MacKinnon, 2013)
* Re-weighted, containment t-test (Imbragimov & Muller, 2015)

* Application to more complex models
* Instrumental variables
* Cross-classified/multiple-membership models

e Software

* clubSandwich R package under active development
(https://github.com/jepusto/clubSandwich)

* Need to implement in Stata (Wanna help?)
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Degrees of freedom (n)

* For single-dimensional tests, n = v (Satterthwaite df).

* Degrees of freedom are diagnostic.
* large n indicates large effective sample size

e small n (i.e., much less than G — 1) indicates that you’ve got small-sample
problems.

* Degrees of freedom capture the influence of covariates on the
distribution of V&Rt
* Unbalanced covariates
» Skewed/leveraged covariates
* Unequal cluster sizes
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Handling fixed effects models

* Two ways to calculate OLS estimates in fixed effects models:
* Use dummy variables, estimate the full regression.
* Absorb the fixed effects, estimate only the remaining coefficents.

* BRL gives different results depending on which design matrix you
use to calculate A,,..,A..

* We identify conditions where it is okay to use the absorbed
design matrix to calculate A,,..,A..
* With OLS estimation, it’s okay if you are using a working identity model.
* Absorb the within-cluster fixed effects only.
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