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Regression with dependent errors
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• Cluster-randomized trials
• Angrist & Lavy (2009) studied effects of monetary incentives on passing 

rates for high school exit exams in Israel

• Difference-in-differences/panel data models
• Carpenter & Dobkin (2011) examined effects of changing minimum legal 

drinking age on motor vehicle fatalities.
• Effects identified by state-level changes in drinking age over time (state-

by-year panel).

• Regression discontinuity designs
• Cortez, Goodman, & Nomi (2015) evaluate effects of double-dose algebra 

program on students math achievement and educational attainment.
• Lee & Card (2008) recommend clustering on unique values of the forcing 

variable to address specification error. 



Cluster-robust variance estimation
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• Method for estimating sampling variance of regression 
coefficients when error structure is unknown 
• Assuming that the data includes G independent clusters of observations.

• White (1984); Arellano (1987); Liang & Zeger (1986)

• Valid (asymptotically consistent) when the number of clusters
(G) is large.

• But can misbehave with few clusters (Cameron & Miller, 2015; 
Imbens & Kolesar, 2015)
• Standard errors that are too small

• Hypothesis tests with inflated type-I error rates

• And it can be hard to tell if your G is big enough



In brief…
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• McCaffrey, Bell, & Botts (2001; Bell & McCaffrey, 2002) proposed 
“bias-reduced linearization” variance estimator (BRL)
• Improves bias of standard errors for small G

• t-tests with Satterthwaite degrees of freedom

• Our work:
• Extends BRL so that it works in models with fixed effects

• Develops an F-test for multi-parameter hypothesis tests

• Provides easy-to-use software implementation in R

• With our extensions, BRL is a general and “production-ready” 
approach to cluster-robust hypothesis testing.



Today
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• “standard” CRVE

• Bias-reduced linearization
• Satterthwaite t-tests

• Our extensions
• F-tests

• Handling fixed effects

• Software



The model
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• Suppose we have a regression model

where
• j = 1,…,G clusters

• Errors have unknown variance Var(ej)=Φj for j = 1,…,G clusters.

• X might include
• Policy indicators

• Demographic controls

• Fixed effects (for clusters, time periods, etc.)

• For today, I’ll assume that regression is estimated by ordinary 
least squares.
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Hypotheses
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• Our goal will be to test hypotheses about elements of β

• Does an intervention have non-zero effects on the outcome?

• Do the intervention effects vary across contexts?
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Standard cluster-robust variance estimation
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• OLS coefficient estimates have (unknown) sampling variance

• Standard CRVE (sandwich estimator):

     
1 1

1

ˆVar
G

t

j j j

j

t t
 



 
 
 

 β X X X Φ X XX



Standard robust hypothesis tests
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• Robust t-test (H0: β1 = 0)

• Robust (Wald-type) F-test (H0: Cβ = 0 for q × p matrix C)
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Performance of standard tests
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q = 1 (t-test) q = 2 (F-test)

q = 3 (F-test) q = 6 (F-test)
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Bias-reduced linearization
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Bias-reduced linearization
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• McCaffrey, Bell, & Botts (2001) proposed a correction to VCR

based on a working model for the error covariance structure.

• Given a working model, seek a variance estimator such that

• The corrected variance estimator is

with adjustment matrices A1,…,AG chosen to satisfy BRL 
criterion.
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Working models
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• “Working independence”, with Φj = Ij

• “Working random effects model” assumes 

• Remarkably, the working model doesn’t matter much.
• BRL greatly reduces bias even if the working model is far from the truth.
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Hypothesis tests
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• We could use VBRL in robust t and F statistics, but…
• Bias of variance estimator is only part of the problem

• t(G-1), F(q, G – 1) often poor approximations for reference distributions

• For t-tests, Bell and McCaffrey (2002) propose to use t(v) 
reference distribution, with Satterthwaite degrees of freedom

with expectation and variance estimated based on the working 
model.
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Pustejovsky & Tipton (2016) addresses 
three outstanding problems with BRL
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• BRL adjustments in models with lots of fixed effects

• Testing multi-parameter hypotheses

• Software availability



Handling fixed effects models
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• Consider state-by-year panel data model

• Common to treat γi, ζt as fixed effects, estimate β by OLS.

• Use CRVE to allow for further correlation among errors within each state.

• BRL breaks in this model (Angrist & Pischke, 2009; Young, 2016).

• We demonstrate that the Moore-Penrose generalized inverse 
can be used to construct adjustment matrices that are still 
unbiased under the working model.

it it i t ity e   x β



Approximate Hotelling Test
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• We propose a generalization of the Satterthwaite approximation 
to the multi-dimensional case.

• Approximate the distribution of VBRL using a Wishart distribution 
with degrees of freedom η and Iq scale matrix.

• Estimate η by matching mean and total variation of VBRL. 
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AHT maintains close-to-nominal α
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AHT test, q = 1 AHT test, q = 2 AHT test, q = 3 AHT test, q = 6

Standard test, q = 1 Standard test, q = 2 Standard test, q = 3 Standard test, q = 6
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Software
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• R package clubSandwich
• https://github.com/jepusto/clubSandwich

• Currently under active development

• Goal is to release to CRAN by 8/1

• Works with a wide variety of fitted models
• lm models: Ordinary/weighted least squares

• plm package: Fixed-effects/random-effects panel models

• nlme package: GLS and HLM models

• Meta-analysis (metafor and robumeta packages)

• Other packages that would be useful?

https://github.com/jepusto/clubSandwich


Angrist & Lavy (2009)
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• Cluster-randomized trial in 40 high schools in Israel.

• Tested effects of monetary incentives on post-secondary 
matriculation exam (Bagrut) completion rates.

• Longitudinal data, D-in-D specification.

• Focus on effects for higher-achieving girls

Hypothesis Test F df p-value

treatment effect 
(q = 1)

Standard 5.746 34.00 .022

Satterthwaite 5.169 18.13 .035

Moderation by 
school sector (q = 2)

Standard 3.186 34.00 .054

AHT 1.665 7.84 .250



Carpenter & Dobkin (2011)
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• Study effects of changing minimum legal drinking age on motor 
vehicle mortality

• State-by-year panel from FARS maintained by NHTSA.

• Difference-in-differences identification.

Hypothesis Test F df p-value

Policy effect (q = 1)
Standard 9.660 49.00 .003

Satterthwaite 9.116 24.58 .006

Hausman test of 
endogeneity (q = 2)

Standard 2.930 49.00 .063

AHT 2.560 11.91 .119



Conclusions
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• Standard tests based on CRVE do not perform well with few or 
even a moderate number of clusters.

• It can be difficult to tell whether you have enough clusters to 
trust standard methods because it depends on
• The hypothesis being tested.

• The structure of the covariates in the model. 

• Satterthwaite t-test/AHT F-test perform well across a broad 
range of applications. We recommend that they be used by 
default.



Thank you
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• pusto@austin.utexas.edu

• http://jepusto.github.io/

• Working paper available at http://arxiv.org/abs/1601.01981

mailto:pusto@austin.utexas.edu
http://jepusto.github.io/
http://arxiv.org/abs/1601.01981
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Future work
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• Compare BRL + AHT to other recent proposals
• Cluster-wild bootstrap (Webb & MacKinnon, 2013)

• Re-weighted, containment t-test (Imbragimov & Muller, 2015)

• Application to more complex models
• Instrumental variables

• Cross-classified/multiple-membership models

• Software
• clubSandwich R package under active development 

(https://github.com/jepusto/clubSandwich)

• Need to implement in Stata (Wanna help?)

https://github.com/jepusto/clubSandwich


Degrees of freedom (η)

26

• For single-dimensional tests, η = v (Satterthwaite df).

• Degrees of freedom are diagnostic.
• large η indicates large effective sample size

• small η (i.e., much less than G – 1) indicates that you’ve got small-sample 
problems. 

• Degrees of freedom capture the influence of covariates on the 
distribution of VBRL

• Unbalanced covariates

• Skewed/leveraged covariates

• Unequal cluster sizes

I got 99 degrees 
of freedom



Handling fixed effects models
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• Two ways to calculate OLS estimates in fixed effects models:
• Use dummy variables, estimate the full regression.

• Absorb the fixed effects, estimate only the remaining coefficents. 

• BRL gives different results depending on which design matrix you 
use to calculate A1,..,AG.

• We identify conditions where it is okay to use the absorbed 
design matrix to calculate A1,..,AG.
• With OLS estimation, it’s okay if you are using a working identity model.

• Absorb the within-cluster fixed effects only. 


