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In brief…
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• Standard cluster-robust variance estimators behave poorly when 
the number of clusters is small

• McCaffrey, Bell, & Botts (2001; Bell & McCaffrey, 2002) proposed 
“bias-reduced linearization” variance estimator (BRL)
• Improves bias of standard errors when number of clusters is small

• Satterthwaite degrees of freedom correction for t-tests

• Breaks in models with fixed effects in multiple dimensions

• Our work:
• Extends BRL so that it works in models with fixed effects

• Develops an F-test for multi-parameter hypothesis tests

• Provides easy-to-use software implementation in R



Fixed effects models
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• Consider state-by-year panel data model

• Common to treat γi, ζt as fixed effects, estimate β by OLS/FGLS

• Cluster standard errors to allow for further correlation among 
errors within each state.
• Asymptotic Wald tests/t-tests with m – 1 degrees of freedom

• These tests have excessive type-I error when m is small 
(Cameron & Miller, 2015; Imbens & Kolesar, 2015)

• And there’s no bright-line rule for “large enough”
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Bias-reduced linearization

4

• McCaffrey, Bell, & Botts (2001) proposed a correction to VCR

based on a working model for the error covariance structure.

• The corrected variance estimator is a “fancy” sandwich:

with adjustment matrices A1,…,AG chosen to satisfy
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Fixed effects models
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• BRL breaks when the model includes fixed effects in multiple 
dimensions (Angrist & Pischke, 2009; Young, 2016).
• Requires inversion of rank-deficient matrices

• We demonstrate that the Moore-Penrose generalized inverse 
can be used to construct a variance estimator that is still 
unbiased under the working model.
• Adjustment matrices can be calculated from least-squares dummy 

variable fit or from “within” estimation, after absorbing fixed effects



Approximate Hotelling Test
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• We propose a generalization of the Satterthwaite approximation 
to the multi-dimensional case, with 

• Approximate the distribution of VBRL using a Wishart distribution 
with degrees of freedom η.

• Estimate η by matching mean and total variance of VBRL. 
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AHT maintains close-to-nominal α
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AHT test, q = 1 AHT test, q = 2 AHT test, q = 3 AHT test, q = 6

Standard test, q = 1 Standard test, q = 2 Standard test, q = 3 Standard test, q = 6
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Angrist & Lavy (2009)
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• Cluster-randomized trial in 40 high schools in Israel.

• Tested effects of monetary incentives on post-secondary 
matriculation exam (Bagrut) completion rates.

• Longitudinal data, difference-in-differences specification.

• Focus on effects for higher-achieving girls

Hypothesis Test F df p-value

treatment effect 
(q = 1)

Standard 5.746 34.00 .022

Satterthwaite 5.169 18.13 .035

Moderation by 
school sector 
(q = 2)

Standard 3.186 34.00 .054

AHT 1.665 7.84 .250



Software
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• R package clubSandwich
• Available on Comprehensive R Archive Network (v0.2.1)

• Development version at https://github.com/jepusto/clubSandwich

• Works with a wide variety of fitted models
• lm models: Ordinary/weighted least squares

• plm package: Fixed-effects/random-effects panel models

• nlme package: GLS and HLM models

• Meta-analysis (metafor and robumeta packages)

https://github.com/jepusto/clubSandwich


Thank you
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• pusto@austin.utexas.edu

• http://jepusto.github.io/

• Working paper available at http://arxiv.org/abs/1601.01981
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