Small-Sample Methods for Cluster-Robust Inference in School-Based Experiments

James E. Pustejovsky UT Austin Educational Psychology Department Quantitative Methods Program <u>pusto@austin.utexas.edu</u>

March 2, 2017 Society for Research on Educational Effectiveness Washington, DC

Elizabeth Tipton Teachers College, Columbia University Dept. of Human Development <u>tipton@tc.columbia.edu</u>

In brief...

- Analysis of social experiments often requires handling *dependencies among outcomes* using:
 - Multi-level modeling
 - Regression with cluster-robust variance estimation (CRVE)
- Conventional CRVE behave poorly when the number of clusters is small, and "small" depends on the model.
- McCaffrey, Bell, & Botts (2001; Bell & McCaffrey, 2002) proposed biasreduced linearization variance estimator (BRL), Satterthwaite t-test
- Our work (Pustejovsky & Tipton, 2017) extends BRL
 - so that it works in panel models with fixed effects
 - F-test for multi-parameter hypothesis tests
 - software implementation in R and Stata (*clubSandwich* package)

Model

• Main impacts model:

$$Y_{ij} = \beta_0 + \beta_1 T_{ij} + \boldsymbol{\beta}_2^t \mathbf{x}_{ij} + \boldsymbol{e}_{ij}$$

- More generally,
 - Models with multiple treatment indicators
 - Treatment-by-covariate interactions
- In matrix form:

$$\mathbf{Y}_i = \mathbf{X}_i \mathbf{\beta} + \mathbf{e}_i, \quad \operatorname{Var}(\mathbf{e}_i) = \mathbf{\Sigma}_i, \quad i = 1, ..., n$$

Estimation

• Estimate **β** by weighted least squares:

$$\hat{\boldsymbol{\beta}} = \mathbf{M}\left(\sum_{i=1}^{n} \mathbf{X}_{i}^{t} \mathbf{W}_{i} \mathbf{Y}_{i}\right), \quad \mathbf{M} = \left(\sum_{i=1}^{n} \mathbf{X}_{i}^{t} \mathbf{W}_{i} \mathbf{X}_{i}\right)^{-1}$$

• Standard CRVE:

$$\mathbf{V}^{CR} = \frac{n}{n-1} \times \mathbf{M} \left(\sum_{i=1}^{n} \mathbf{X}_{i}^{t} \mathbf{W}_{i} \hat{\mathbf{e}}_{i} \hat{\mathbf{e}}_{i}^{t} \mathbf{W}_{i} \mathbf{X}_{i} \right) \mathbf{M}$$

• Conventional to use *n* – 1 degrees of freedom for t-tests.

Bias-reduced linearization

 Corrects V^{CR} based on a working model for the error covariance structure:

$$\mathbf{V}^{BRL} = \mathbf{M}\left(\sum_{i=1}^{n} \mathbf{X}_{i}^{t} \mathbf{W}_{i} \mathbf{A}_{i} \hat{\mathbf{e}}_{i} \hat{\mathbf{e}}_{i}^{t} \mathbf{A}_{i}^{t} \mathbf{W}_{i} \mathbf{X}_{i}\right) \mathbf{M}$$

with adjustment matrices $A_1, ..., A_n$ chosen to satisfy

$$\mathbf{E}\left(\mathbf{V}^{BRL}\right) = \mathbf{Var}\left(\hat{\boldsymbol{\beta}}\right)$$

- Degrees of freedom corrections for hypothesis tests
 - Satterthwaite d.f. for t-tests (Bell & McCaffrey, 2002)
 - Approximate Hotelling's T² d.f. for F-test (Tipton & Pustejovsky, 2015; Pustejovsky & Tipton, 2017)

Approximate Hotelling Test

- We propose a generalization of the Satterthwaite approximation to the multi-dimensional case, with $H_0: C\beta = 0$
- Approximate the distribution of V^{BRL} using a Wishart distribution with degrees of freedom η .
- Estimate η by matching mean and **total variance** of V^{BRL}.

$$F_{AHT} = \frac{\eta - q + 1}{\eta q} \left(\mathbf{C}\hat{\boldsymbol{\beta}} \right)^{t} \left(\mathbf{C}\mathbf{V}^{BRL}\mathbf{C} \right)^{-1} \left(\mathbf{C}\hat{\boldsymbol{\beta}} \right)$$
$$F_{AHT} \stackrel{\sim}{\sim} F\left(q, \eta - q + 1\right)$$

Effects of Tribes Learning Communities (Hanson et al., 2011)

- Social-Emotional Learning curriculum.
- Classroom-level randomization to TRIBES or BAU control.
- 10 participating schools in Grades 1-2.
- Original analysis used HLM with classroom level random effects, school fixed effects.

Effects of Tribes Learning Communities (Hanson et al., 2011)

- OLS estimation (seemingly unrelated regressions)
- Cluster SEs by school

	Impact Est.	Conventional CRVE			Bias-Reduced Linearization		
Outcome	(ES units)	SE	df	р	SE	df	р
Aggressive behavior (T)	0.329	0.156	9	.065	0.173	7.0	.098
Rule-breaking (T)	0.312	0.157	9	.078	0.173	7.0	.114
Interpersonal strength (P)	0.209	0.079	9	.026	0.085	7.5	.041
Intrapersonal strength (P)	0.231	0.077	9	.015	0.081	7.4	.023

Joint test of outcomes

- Conventional: F(4, 9) = 6.82, p = .008
- Bias-reduced linearization: F(4, 4.3) = 3.70, p = .109

Angrist & Lavy (2009)

- Cluster-randomized trial in 40 high schools in Israel.
- Tested effects of monetary incentives on post-secondary matriculation exam (Bagrut) completion rates.
- Longitudinal data, difference-in-differences specification.
- Focus on effects for higher-achieving girls

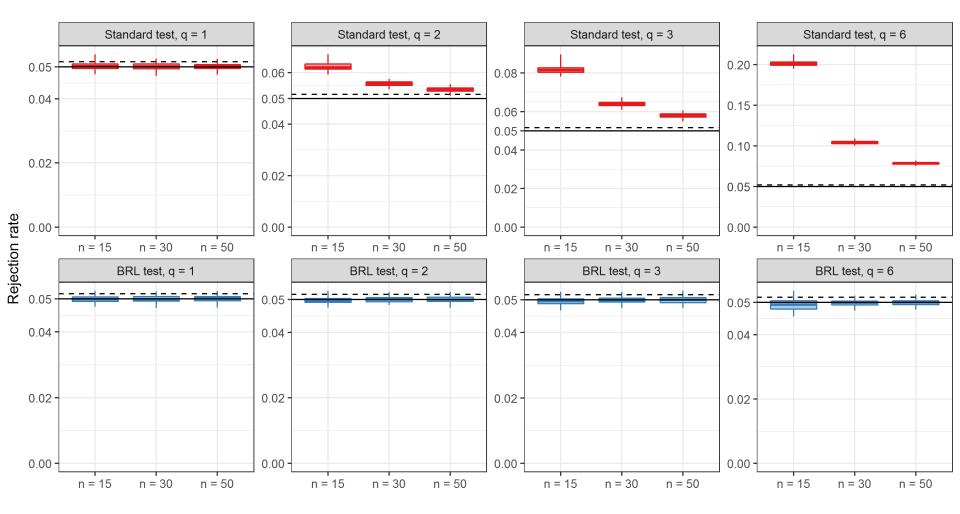
Hypothesis	Test	F	df	p-value
treatment effect (q = 1)	Standard	5.746	34.00	.022
	Satterthwaite	5.169	18.13	.035
Moderation by school sector (q = 2)	Standard	3.186	34.00	.054
	AHT	1.665	7.84	.250

Further considerations

- Magnitude of SE adjustment and degrees of freedom depend on:
 - Weighting
 - Cluster sizes
 - Balance
 - Covariate distribution
- Given these complexities, we recommend applying small-sample adjustment by default when using CRVE.

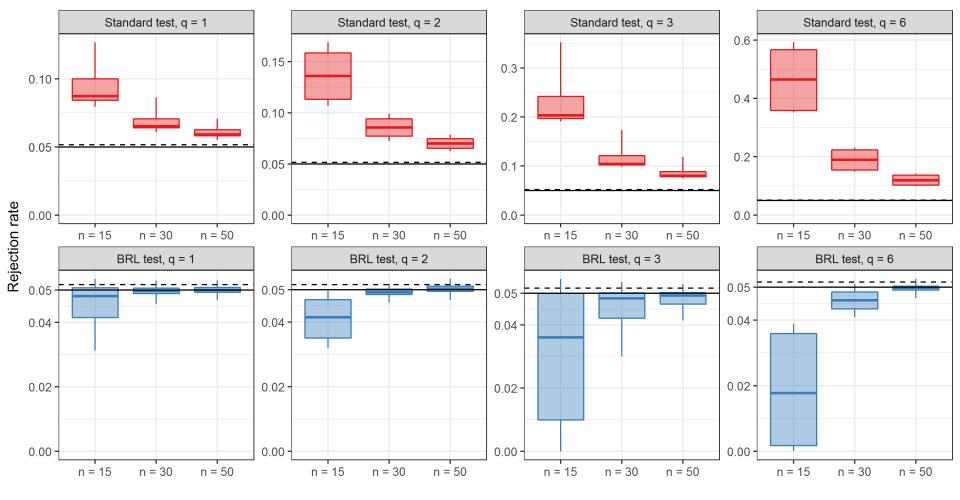
Software

- R package clubSandwich
 - Available on Comprehensive R Archive Network (v0.2.1)
 - Development version at <u>https://github.com/jepusto/clubSandwich</u>
 - Works with a wide variety of models (Im, Ime, plm)
- Stata package clubSandwich
 - Available on Github: <u>https://github.com/jepusto/clubSandwich-Stata</u>
 - Wraps reg and areg


Future directions

- Performance comparisons versus other small-sample corrections
 - Cluster-wild bootstrap (Cameron, Gelbach, & Miller, 2008; MacKinnon & Webb, 2016).
 - Randomization tests (Canay, Romano, & Shaikh, 2014).
 - Other degrees-of-freedom corrections from GEE literature (e.g., Fay & Graubard, 2001; Wang & Long, 2011).
 - Robust score (LM) tests.
- Extensions
 - Instrumental variables (2-stage least squares)
 - GEE models
 - Multi-way clustering (Cameron, Gelbach, & Miller, 2011)

References


- Angrist, J. D., & Lavy, V. (2009). The effects of high stakes high school achievement awards : Evidence from a randomized trial. *American Economic Review*, 99(4), 1384–1414.
- Bell, R. M., & McCaffrey, D. F. (2002). Bias reduction in standard errors for linear regression with multi-stage samples. *Survey Methodology*, 28(2), 169–181.
- Cameron, A. C., Gelbach, J. B., and Miller, D. (2008). Bootstrap-based improvements for inference with clustered errors. *The Review of Economics and Statistics*, 90(3):414–427.
- Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2011). Robust inference with multiway clustering. *Journal of Business & Economic Statistics*, 29(2), 238–249..
- Canay, I. A., Romano, J. P., & Shaikh, A. M. (2014). Randomization tests under an approximate symmetry assumption. Working paper.
- Fay MP and Graubard BI. Small-sample adjustments for Wald-type tests using sandwich estimators. Biometrics 2001;57: 1198-1206.
- Hanson, Thomas L., Jo Ann Izu, Anthony Petrosino, Bo Delong-Cotty, and Hong Zheng. Outcome Evaluation of Tribes Learning Communities in California, 2007-2010. ICPSR32821-v1. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2012-12-20.
- Imbens, G. W. and Kolesar, M. (2016). Robust Standard Errors in Small Samples: Some Practical Advice. *Review of Economics and Statistics*, forthcoming.
- James-Burdurmy, Susanne. Randomized Experiment of Playworks Analytic Files for 2010-2011 and 2011-2012 Cohorts in Six United States Cities. ICPSR35638-v1. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2016-09-20.
- Lee, D. S., & Card, D. (2008). Regression discontinuity inference with specification error. *Journal of Econometrics*, 142(2), 655–674.
- MacKinnon, J. G. and Webb, M. D. (2016). Wild bootstrap inference for wildly different cluster sizes. *Journal of Applied Econometrics*, forthcoming.
- McCaffrey, D. F., Bell, R. M., & Botts, C. H. (2001). Generalizations of biased reduced linearization. In *Proceedings of the Annual Meeting of the American Statistical Association*.
- Pustejovsky, James E. & Elizabeth Tipton (2017). Small sample methods for cluster-robust variance estimation and hypothesis testing in fixed effects models. Journal of Business and Economic Statistics. In Press.
- Tipton, E., & Pustejovsky, J. E. (2015). Small-sample adjustments for tests of moderators and model fit using robust variance estimation in meta-regression. *Journal of Educational and Behavioral Statistics*, 40(6), 604–634.
- Wang M and Long Q. Modified robust variance estimator for generalized estimating equations with improved small-sample performance. Statistics in Medicine 2011;30(11): 1278-1291.

Simulation results: Block-randomized trials

Note: q is the dimension of the hypothesis test. Source: Pustejovsky & Tipton (2017).

Simulation results: Cluster-randomized trials

Note: q is the dimension of the hypothesis test. Source: Pustejovsky & Tipton (2017).

Block-randomized/multi-site trials

• Model with block fixed effects:

$$Y_{ij} = \beta_i + \delta T_{ij} + e_{ij}$$

• Overall impact estimate:

$$\hat{\delta} = \frac{1}{W} \sum_{i=1}^{n} w_i \hat{\delta}_i, \quad W = \sum_{i=1}^{n} w_i$$

where $\hat{\delta}_1, \ldots, \hat{\delta}_n$ are treatment effect estimates from each block.

• Conventional CRVE (clustering by block):

$$\mathbf{V}^{CR} = \frac{1}{W^2} \sum_{i=1}^n w_i^2 \left(\hat{\delta}_i - \hat{\delta}\right)^2$$

Block-randomized/multi-site trials (cont.)

• BRL correction:

$$\mathbf{V}^{BRL} = \frac{1}{W^{2}} \sum_{i=1}^{n} \frac{w_{i}^{2} \left(\hat{\delta}_{i} - \hat{\delta}\right)^{2}}{\left(1 - w_{i} / W\right)}$$

• Satterthwaite df:

$$df = \left[\sum_{i=1}^{n} \frac{w_i^2}{\left(W - w_i\right)^2} - \frac{2}{W} \sum_{i=1}^{n} \frac{w_i^3}{\left(W - w_i\right)^2} + \frac{1}{W^2} \left(\sum_{i=1}^{n} \frac{w_i^2}{W - w_i}\right)^2\right]^{-1}$$

• Satterthwaite df = n - 1 if w_i are equal (otherwise df < n - 1).

Cluster-randomized trials

• Model (without covariates):

$$Y_{ij} = \beta_0 + \delta T_i + e_{ij}$$

• Overall impact estimate:

$$\hat{\delta} = \frac{1}{W_T} \sum_{i=1}^{n_T} w_i \hat{\mu}_i^T - \frac{1}{W_C} \sum_{i=1}^{n_C} w_i \hat{\mu}_i^C$$

where $\hat{\mu}_1^T$, ..., $\hat{\mu}_{n_T}^T$ and $\hat{\mu}_1^C$, ..., $\hat{\mu}_{n_C}^C$ are cluster-specific mean estimates.

Cluster-randomized trials (cont.)

• Conventional CRVE:

$$\mathbf{V}^{CR} = \frac{1}{W_T^2} \sum_{i=1}^{n_T} w_i^2 \left(\hat{\mu}_i^T - \hat{\mu}_{\cdot}^T\right)^2 + \frac{1}{W_C^2} \sum_{j=1}^{n_C} w_i^2 \left(\hat{\mu}_i^C - \hat{\mu}_{\cdot}^C\right)^2$$

• BRL correction:

$$\mathbf{V}^{BRL} = \frac{1}{W_T^2} \sum_{i=1}^{n_T} \frac{w_i^2 \left(\hat{\mu}_i^T - \hat{\mu}_{\bullet}^T\right)^2}{1 - w_i / W_T} + \frac{1}{W_C^2} \sum_{j=1}^{n_C} \frac{w_i^2 \left(\hat{\mu}_i^C - \hat{\mu}_{\bullet}^C\right)^2}{1 - w_i / W_C}$$

• If w_i are approximately equal (cf. Imbens & Kolesaar, 2016):

$$df \approx \frac{\left(n_{T} + n_{C}\right)^{2} \left(n_{T} - 1\right) \left(n_{C} - 1\right)}{n_{T}^{2} \left(n_{T} - 1\right) + n_{C}^{2} \left(n_{C} - 1\right)}$$

Effects of Playworks on school climate, student social skills and behavior (James-Burdurmy et al., 2013)

- Structured physical activity and recess coaching program.
- 29 participating schools, grouped in 9 blocks
- School-level block randomization to Playworks or BAU control.
 - 17 treatment schools
 - 12 control schools
- OLS estimation, including block fixed effects
- Cluster SEs by school

Effects of Playworks on school climate, student social skills and behavior (James-Burdurmy et al., 2013)

	Impact	Conventional CRVE			Bias-Reduced Linearization		
Outcome	Est. (ES units)	SE	df	р	SE	Df	р
Teacher support for organized play	0.591	0.138	28	<.001	0.172	12.0	.005
Staff support for organized play	0.324	0.130	28	.019	0.156	12.2	.059
Student bullying/exclusion	-1.014	0.187	28	<.001	0.253	11.9	.002
Difficult transitioning to learning after recess	-0.840	0.112	28	<.001	0.143	11.8	<.001

Joint test of outcomes

- Conventional: F(4, 28) = 23.5, p < .001
- Bias-reduced linearization: F(4, 9.0) = 10.6, p = .002