COMBINING ROBUST VARIANCE ESTIMATION WITH MODELS FOR DEPENDENT EFFECT SIZES

James E. Pustejovsky, UT Austin Beth Tipton, Columbia University Ariel Aloe, University of Iowa SRSM, Bristol, UK July 18, 2018 <u>pusto@austin.utexas.edu</u>

THESIS

- Many methods available for meta-analyzing dependent effect size estimates.
 - ad hoc methods (Hammering the screws)
 - model-based methods
 - robust variance estimation (RVE)
- Useful to combine RVE with model-based approaches.
 - Addresses limitations of model-based approaches.
 - Addresses limitations of default RVE implementation.

Model-based meta-analysis methods

Robust variance estimation

better together

DEPENDENT EFFECT SIZES ARE VERY COMMON

Multiple outcomes measured on common set of participants

d_{O1} T d_{P1} C

Multiple treatment conditions compared to a common control

Outcome measured at multiple follow-up times

Multiple correlations from a

FRIESE, FRANKENBACH, JOB, & LOSCHELDER (2017). DOES SELF-CONTROL TRAINING IMPROVE SELF-CONTROL: A META-ANALYSIS.

33 experimental studies, 166 effect size estimates (standardized mean differences)

- \checkmark Multiple outcomes (1-13 outcomes per study, median = 2)
- ✓ Multiple follow-up times (immediate post-test and/or later follow-up)
- Multiple treatment conditions (1-4 treatment conditions per study)
- ✓ Multiple control conditions (active and/or passive control)
- \checkmark 1-52 effect size estimates per study (median = 2)

COVARIANCES BETWEEN ES ESTIMATES ARE OFTEN NOT AVAILABLE

- Multiple treatments compared to common control
- known formulas (Gleser & Olkin, 2009), easy enough to calculate

- Multiple outcomes/multiple follow-ups
 - known formulas (Gleser & Olkin, 2009)
 - require knowing correlations among outcomes/repeated measures, which are not often reported

- Multiple correlations from common sample
 - known, icky formulas (Olkin & Siotani, 1976)
 - need to know correlations between ALL variables involved

BECKER (2000) DESCRIBED FOUR BROAD STRATEGIES FOR HANDLING DEPENDENCE:

COMPARISON

Method	Requires making assumptions about ES covariances
Aggregated effects	\checkmark
Sub-grouping	\checkmark
Shifting unit-of-analysis	\checkmark
Multivariate meta- analysis	\checkmark
Multi-level meta-analysis	\checkmark
Meta-SEM	\checkmark
Robust variance estimation	✓ (Working model)

ROBUST VARIANCE ESTIMATION (Hedges, Tipton, & Johnson, 2010)

Meta-analysis/meta-regression method using "sandwich" variance estimators, which are robust to mis-specified assumptions about variance-covariance structure.

 Sandwich methods work with very general classes of models, including any of the other methods for handling dependent effects.

Proof: See Hedges et al. (2010, Appendix A).

COMPARISON

Method	Requires making assumptions about ES covariances	Robustness to assumptions about ES covariances
Aggregated effects	\checkmark	Robust*
Sub-grouping	\checkmark	Robust*
Shifting unit-of-analysis	\checkmark	Robust*
Multivariate meta- analysis	\checkmark	Robust*
Multi-level meta-analysis	\checkmark	Robust*
Meta-SEM	\checkmark	Robust*
Robust variance estimation	✓ (Working model)	Robust

* When combined with robust (sandwich) variance estimation

DEFAULT RVE IMPLEMENTATION HAS LIMITATIONS (Hedges, Tipton, & Johnson, 2010)

- Implementation in robumeta packages for R and Stata.
- Limited to two "working models": correlated effects or hierarchical effects.
- Uses semi-efficient diagonal weights:

$$w_{ij} = \frac{1}{n_j (\bar{s}_j^2 + \hat{\tau}^2)}, \quad \text{where } \bar{s}_j^2 = \frac{1}{n_j} \sum_{i=1}^{n_j} s_{ij}^2$$

- Studies contributing more effects get less weight in metaregressions that have within-study predictors.
 - Similar to meta-regression after aggregating to the study level.

RE-ANALYSIS OF SELF-CONTROL TRAINING STUDIES

	(1) Aggregated effects	(2) Shifting unit- of-analysis	(3) Multivariate meta-analysis	(4) Multi-level meta-analysis	(5) Robust variance estimation
Overall Average ES (k = 33, N = 166)	0.281*** [0.059]		0.261*** [0.052]	0.263*** [0.054]	0.289*** [0.060]
Between-study SD	0.207		0.202	0.254	0.289
Within-study SD			0.143	0.027	

Moderator analysis by type of outcome

Stamina	0.579***	0.413**	0.359***	0.351***	0.579***
(k = 16, N = 31)	[0.1 <i>57</i>]	[0.093]	[0.077]	[0.071]	[0.123]
Strength	0.199**	0.171**	0.236***	0.238***	0.203**
(k = 28, N = 135)	[0.071]	[0.064]	[0.054]	[0.055]	[0.065]
Difference	-0.380*	-0.243*	-0.123	-0.112	-0.376*
	[0.185]	[0.113]	[0.072]	[0.059]	[0.136]

DISCUSSION

- Robust "sandwich" variance estimation can be used with any of the available methods for handling dependence.
 - Hong, Chen, & Riley (2018) propose this for bivariate meta-analysis.
- Default RVE should not be used for meta-regression with predictors that vary within study.
- More attention to within- versus between-study variation in moderators.
- Improve software to make multivariate meta-analysis easier to implement.

THANKS

James E. Pustejovsky pusto@austin.utexas.edu https://jepusto.com

REFERENCES

Becker, B. J. (2000). Multivariate Meta-analysis. In S. D. Brown & H. E. A. Tinsley (Eds.), Handbook of Applied Multivariate Statistics and Mathematical Modeling (pp. 499–525). San Diego, CA: Academic Press.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). *Introduction to Meta-Analysis*. Chichester, UK: John Wiley & Sons, Ltd.

Cheung, M. W. L. (2014). Modeling dependent effect sizes with three-level meta-analyses: A structural equation modeling approach. *Psychological Methods*, 19(2), 211–229. <u>http://doi.org/10.1037/a0032968</u>

Cooper, H. M. (1998). Synthesizing Research: A Guide for Literature Reviews (3rd ed.). Thousand Oaks, CA: Sage Publications, Inc.

Friese, M., Frankenbach, J., Job, V., & Loschelder, D. D. (2017). Does Self-Control Training Improve Self-Control? A Meta-Analysis. *Perspectives on Psychological Science*, 12(6), 1077–1099. <u>http://doi.org/10.1177/1745691617697076</u>

Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), *The Handbook of Research Synthesis and Meta-Analysis* (2nd ed., pp. 357–376). New York, NY: Russell Sage Foundation.

Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. *Research Synthesis Methods*, 1(1), 39–65. <u>http://doi.org/10.1002/jrsm.5</u>

Hong, C., D. Riley, R., & Chen, Y. (2018). An improved method for bivariate meta-analysis when within-study correlations are unknown. *Research synthesis methods*, 9(1), 73-88.

MORE REFERENCES

Kalaian, H. a., & Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. *Psychological Methods*, 1(3), 227–235. <u>http://doi.org/10.1037/1082-989X.1.3.227</u>

Olkin, I., & Siotani, M. (1976). Asymptotic distribution of functions of a correlation matrix. In S. Ikeda (Ed.), Essays in Probability and Statistics. Tokyo, Japan: Shinko Tsusho Co., Ltd., p. 235-251.

Raudenbush, S. W., Becker, B. J., & Kalaian, H. a. (1988). Modeling multivariate effect sizes. *Psychological Bulletin*, 103(1), 111–120. <u>http://doi.org/10.1037/0033-2909.103.1.111</u>

Riley, R. D. (2009). Multivariate meta-analysis: the effect of ignoring within-study correlation. *Journal of the Royal Statistical Society: Series A (Statistics in Society)*, 172(4), 789-811.

Van den Noortgate, W., López-López, J. A., Marín-Martínez, F., & Sánchez-Meca, J. (2013). Three-level metaanalysis of dependent effect sizes. *Behavior Research Methods*, 45(2), 576–594. <u>http://doi.org/10.3758/s13428-012-0261-6</u>

Van den Noortgate, W., López-López, J. A., Marín-Martínez, F., & Sánchez-Meca, J. (2015). Meta-analysis of multiple outcomes: a multilevel approach. *Behavior Research Methods*, 47(4), 1274–1294. <u>http://doi.org/10.3758/s13428-014-0527-2</u>