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THESIS

 Many methods available for meta-analyzing dependent 
effect size estimates.
 ad hoc methods (Hammering the screws)

 model-based methods

 robust variance estimation (RVE)

 Useful to combine RVE with model-based approaches.
 Addresses limitations of model-based approaches.

 Addresses limitations of default RVE implementation.
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DEPENDENT EFFECT SIZES ARE VERY 
COMMON

Treatment O P Q

Control O P Q

Multiple outcomes measured on 

common set of participants 

dO1

dP1

dQ1

Treatment O1 O2 O3

Control O1 O2 O3

Outcome measured at multiple 

follow-up times

d12

d22

d32

Treatment T O

Treatment U O

Control O

Multiple treatment conditions 

compared to a common control

dT3

dU3

Multiple correlations from a 

common sample a b c d

a

b

c

d

rab

rac

rad



FRIESE, FRANKENBACH, JOB, & LOSCHELDER (2017). 
DOES SELF-CONTROL TRAINING IMPROVE SELF-
CONTROL: A META-ANALYSIS.

33 experimental studies, 166 effect size estimates 
(standardized mean differences)

 Multiple outcomes (1-13 outcomes per study, median = 2)

 Multiple follow-up times (immediate post-test and/or later follow-up)

 Multiple treatment conditions (1-4 treatment conditions per study)

 Multiple control conditions (active and/or passive control)

 1-52 effect size estimates per study (median = 2) 



COVARIANCES BETWEEN ES ESTIMATES 
ARE OFTEN NOT AVAILABLE

 Multiple treatments compared to common control 

 known formulas (Gleser & Olkin, 2009), easy enough to calculate

 Multiple outcomes/multiple follow-ups

 known formulas (Gleser & Olkin, 2009)

 require knowing correlations among outcomes/repeated measures, which are 
not often reported

 Multiple correlations from common sample

 known, icky formulas (Olkin & Siotani, 1976)

 need to know correlations between ALL variables involved



BECKER (2000) DESCRIBED FOUR BROAD 
STRATEGIES FOR HANDLING DEPENDENCE:
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COMPARISON

Method

Requires making 

assumptions about ES 

covariances

Robustness to 

assumptions about ES 

covariances

Aggregated effects  ?

Sub-grouping  ?

Shifting unit-of-analysis  ?

Multivariate meta-

analysis

 Sometimes 

(Riley, 2008)

Multi-level meta-analysis  Sometimes
(Van den Noortgate et al., 2013, 2015)

Meta-SEM  ?

Robust variance 

estimation

 (Working model) Robust



ROBUST VARIANCE ESTIMATION
(Hedges, Tipton, & Johnson, 2010)

 Meta-analysis/meta-regression method using “sandwich” 
variance estimators, which are robust to mis-specified 
assumptions about variance-covariance structure. 

 Sandwich methods work with very general classes of 
models, including any of the other methods for handling 
dependent effects.
 Proof: See Hedges et al. (2010, Appendix A).
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COMPARISON

Method

Requires making 

assumptions about ES 

covariances

Robustness to 

assumptions about ES 

covariances

Aggregated effects  Robust*

Sub-grouping  Robust*

Shifting unit-of-analysis  Robust*

Multivariate meta-

analysis

 Robust*

Multi-level meta-analysis  Robust*

Meta-SEM  Robust*

Robust variance 

estimation

 (Working model) Robust

* When combined with robust (sandwich) variance estimation



DEFAULT RVE IMPLEMENTATION HAS 
LIMITATIONS
(Hedges, Tipton, & Johnson, 2010)

 Implementation in robumeta packages for R and Stata.

 Limited to two “working models”: correlated effects or 
hierarchical effects.

 Uses semi-efficient diagonal weights:
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 Studies contributing more effects get less weight in meta-
regressions that have within-study predictors.
 Similar to meta-regression after aggregating to the study level.
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Overall Average ES

(k = 33, N = 166)

0.281***

[0.059]

0.261***

[0.052]

0.263***

[0.054]

0.289***

[0.060]

Between-study SD 0.207 0.202 0.254 0.289

Within-study SD 0.143 0.027

RE-ANALYSIS OF SELF-CONTROL TRAINING STUDIES

Moderator analysis by type of outcome

Stamina

(k = 16, N = 31)

0.579***

[0.157]

0.413**

[0.093]

0.359***

[0.077]

0.351***

[0.071]

0.579***

[0.123]

Strength

(k = 28, N = 135)

0.199**

[0.071]

0.171**

[0.064]

0.236***

[0.054]

0.238***

[0.055]

0.203**

[0.065]

Difference -0.380*

[0.185]

-0.243*

[0.113]

-0.123

[0.072]

-0.112

[0.059]

-0.376*

[0.136]



DISCUSSION

 Robust “sandwich” variance estimation can be used with any of the 
available methods for handling dependence.
 Hong, Chen, & Riley (2018) propose this for bivariate meta-analysis.

 Default RVE should not be used for meta-regression with predictors 
that vary within study.

 More attention to within- versus between-study variation in 
moderators.

 Improve software to make multivariate meta-analysis easier to 
implement.
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