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Abstract

Meta-analyses of the relationship between two continuous variables sometimes involves

conversions between different effect sizes, but methodological literature offers conflicting

guidance about how to make such conversions. This article provides methods for

converting from a standardized mean difference to a correlation coefficient (and from there

to Fisher’s z) under three types of study designs: extreme groups, dichotomization of a

continuous variable, and controlled experiments. Also provided are formulas and

recommendations regarding how the sampling variance of effect size statistics should be

estimated in each of these cases. The conversion formula for extreme groups designs,

originally due to Feldt, can be viewed as a generalization of Hunter and Schmidt’s method

for dichotomization designs. A simulation study examines the finite-sample properties of

the proposed methods. The conclusion highlights areas where current guidance in the

literature should be amended or clarified.

Keywords: effect size; extreme groups; dichotomization; correlation
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Converting from d to r to z when the Design Uses Extreme Groups, Dichotomization, or

Experimental Control

Sophisticated consumers of research, attuned to questions of effect magnitude,

sometimes need to convert between different effect size metrics, such as between

standardized mean difference (d-type) and correlation (r-type) metrics. Converting

between metrics is necessary because study results may be reported using statistics other

than the effect size that is most useful or intuitive for interpreting the findings. For

instance, a study might report a d statistic based on dichotomizing a continuous variable,

when one’s interest is in the correlation between the continuous variable and the outcome.

Furthermore, effect size conversions are a crucial step in the process of quantitative

research synthesis, in which the goal is to combine results (in the form of effect sizes) from

multiple studies. Meta-analytic models that average or compare results from different

studies become uninterpretable if the effect sizes to be modeled are not first put on a

common scale. For instance, a meta-analysis might be based predominantly on

correlational effect sizes but also include effect sizes from controlled experiments, which are

typically reported as d-statistics (e.g., Hagger & Chatzisarantis, 2009; Macbeth & Gumley,

2012). In such cases, the meta-analyst will need to convert from d to r.

Despite their importance, the methods and formulas for effect size conversions can be

a source of confusion for the working researcher or meta-analyst. There are several reasons

for this. The first is a ambiguity regarding the estimand to which an effect size statistic is

intended to correspond. For example, Borenstein (2009) and Borenstein, Hedges, Higgins,

and Rothstein (2009) propose to convert standardized mean differences between two groups

(d-type effect sizes) into point-biserial correlation coefficients, which measure the linear

association between the outcome variable and a binary indicator for group membership. In

contrast to Borenstein’s approach, Hunter and Schmidt (1990, 2004) take the target

parameter to be the correlation between the outcome and an underlying continuous

variable on which group membership is based, for which the the point-biserial correlation
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coefficient is a biased estimator. They therefore provide and recommend methods that

correct this “study artifact” (Hunter & Schmidt, 1990, 2004). The difference between these

two approaches stems from different assumptions regarding which target parameter is

appropriate as an effect size measure.

A second source of confusion regarding effect size conversions stems from

disagreement regarding whether and when certain effect size conversions are appropriate.

Many methodologists recommend meta-analyzing correlation coefficients after applying

Fisher’s z-transformation (e.g., Borenstein, 2009; Hedges & Olkin, 1985) because the

transformed estimates have improved statistical properties. In contrast, Hunter and

Schmidt (2004) recommend against z-transformation, suggesting instead that correlation

coefficients be meta-analyzed in their natural metric. Working meta-analysts are thus left

without definitive guidance, in spite of the fact that controversy regarding z-transformation

seems to stem largely from differences in maintained modeling assumptions (Hafdahl &

Williams, 2009).

Finally, and most fundamentally, confusion regarding effect size conversions arises

because conversion formulas are framed as applying across entire categories of effect size

measure and as being reversible (cf. Borenstein et al., 2009). When framed this way, one

may have the impression that converting from an effect size of type A to one of type B is

simply a matter of inverting the conversion formula from B to A, as if it were an algebraic

identity. In fact, conversion formulas are more narrowly applicable and depend on the

study design used to generate a given effect size statistic. Consider the standardized mean

difference d, which is calculated by taking the difference in mean outcomes between two

groups, then dividing by the standard deviation of the outcome. The statistical properties

of the standardized mean difference depend strongly on the study design; the d statistic

calculated from a repeated measures design has a different sampling variance than that

calculated from a simple between-groups design (Morris & DeShon, 2002), and both differ

from the various d statistics that can be calculated from cluster-randomized designs
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(Hedges, 2007, 2011). Baguley (2009) makes the broader point that all standardized effect

sizes are sensitive to variations in study design.

This paper aims to provide a modicum of clarity regarding effect size conversion by

addressing just two related types of conversions: from d to Pearson’s product-moment

correlation r and from r to z. I do not consider conversions in the opposite direction, from

z to r or from r to d, and the methods presented here should not be interpreted as

applying to those cases. In contrast to previous work, which presents conversion formulas

as if they were applicable to any effect size of a given type, I focus narrowly on three types

of study designs, considering distinct d-to-r conversion formulas and associated variance

estimators in each case. These three designs, all likely to be encountered in practice, are:

the controlled experimental design, the dichotomization design, and the extreme groups

design. For context, I also discuss the bivariate sampling design, the most conventional

method used to estimate the Pearson correlation between two continuous variables. In each

of the three designs, results are commonly reported using d effect sizes, even though

Pearson product-moment correlations may be of greater interest or utility; thus, researchers

and meta-analysts will often need to convert from one metric to the other. Furthermore,

some meta-analysts may also wish to convert from r to z for purposes of synthesizing effect

sizes across studies.

Some of the methods discussed below are well-known, while others are novel. For the

controlled experimental design, the d-to-r conversion formulas are closely related to the

point-biserial correlation coefficient, as discussed in Hunter and Schmidt (2004, Chapter 7),

but are to the best of my knowledge novel. For the dichotomization design, Hunter and

Schmidt (2004) present formulas for converting a reported d statistic to a correlation

coefficient r, though the variance estimators proposed for use with the converted effect size

statistic are problematic. For the extreme groups design, Feldt (1961) presented a d-to-r

conversion formula assuming groups of equal size. Though Feldt’s work was cited in one

early text on meta-analysis (Glass, McGaw, & Smith, 1981, Table 5.8), it seems to have
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been largely ignored by meta-analysts and is not discussed or cited in more recent

textbooks. Below, I provide a generalization of Feldt’s result to unequal group sizes and

study associated variance estimators in detail. In so doing, I also demonstrate that

dichotomization is a special case of the extreme groups design; thus, conversion formulas

for both designs can be studied by using a general formulation of the extreme groups

design. Finally, I propose a novel solution to a technical problem that arises in

dichotomization and extreme groups designs when converting from r to z.

In the next section, I explain each of the designs in detail and describe motivating

examples. The following sections present models and formulas for converting from d to r to

z effect sizes and address variance estimation. After that, a simulation study examines the

small-sample properties of the estimators. I then return to the motivating examples,

demonstrating how to use the appropriate conversion formulas for each design. A brief

conclusion discusses limitations and future directions. Readers eager to begin converting

effect sizes should consult Table 1, which displays the equation numbers of the appropriate

conversion formulas and variance estimators for each type of design, as well as the online

supplementary material, which includes a spreadsheet implementing all of the formulas.

Study designs and examples

This section describes four types of study designs that may be relevant to the

estimation of a Pearson correlation: bivariate sampling, the controlled experiment,

dichotomization, and the extreme groups design. For each design, I provide a general

description of the procedures and statistics involved and then give an example.

Bivariate sampling

The bivariate sampling design is conventional and simple: procedurally, it involves

nothing more than measuring two variables X and Y on a sample of n individuals and

computing the Pearson correlation coefficient r based on the sample data. If (xi, yi) denote
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the measured variables for individual i = 1, ..., n, the sample correlation is calculated as

rp =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2∑n
i=1(yi − ȳ)2

, (1)

where x̄ and ȳ are the means of x1, ..., xn and y1, ..., yn, respectively. I denote this statistic

rp to distinguish it from other correlation statistics discussed in later sections. The statistic

rp provides a sample estimate of the correlation between X and Y in the population.

Example 1. Chatzisarantis, Hagger, and Smith (2007) studied the relationship

between an individual’s intentions to participate in vigorous physical activity and his or

her level of perceived autonomy support (PAS). The authors collected Likert-scale

measures of both intentions and PAS on a sample of 165 high school students. In a

preliminary analysis, they reported that the Pearson correlation between intentions and

PAS was rp = 0.58 (Chatzisarantis et al., 2007, Table 3). This correlation coefficient was

later used in a meta-analysis of the same constructs (Hagger & Chatzisarantis, 2009).

Controlled experiment

Along with the bivariate sampling design, the controlled experimental design is a

primary method of psychological science. As oppose to measuring two variables that

capture individual differences, the controlled experiment studies the effect on an outcome

variable Y of an active manipulation by the researcher. A basic between-groups experiment

involves assigning (often randomly) two groups of individuals to receive a treatment

condition or a control condition, then taking measurements of an outcome variable on each

individual. In an experiment with a total of n participants, suppose that the first n1

individuals receive a control condition and have outcome measurements y1, ..., yn1 , while

the remaining the remaining n2 = n− n1 individuals receive a treatment condition and

have outcome measurements yn1+1, ..., yn. The sample means (ȳ1 and ȳ2) and variances (s2
1
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and s2
2) in each group are calculated as

ȳ1 = 1
n1

n1∑
i=1

yi, s2
1 = 1

n1 − 1

n1∑
i=1

(yi − ȳ1)2,

ȳ2 = 1
n2

n∑
i=n1+1

yi, s2
2 = 1

n2 − 1

n∑
i=n1+1

(yi − ȳ1)2.

(2)

These statistics will often appear in reports of controlled experiments. Authors might

describe the magnitude of the difference between treatment and control conditions using

the standardized mean difference effect size d, which is calculated as

d = ȳ2 − ȳ1

sp
, (3)

where sp is the pooled sample standard deviation

sp =
√

(n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2 .

The standardized mean difference measures the average causal effect on Y of assigning

individuals to the treatment versus control condition.

Those who think of treatments as intervention packages containing many component

pieces may wonder how the results of an experiment could relate to the correlation between

continuous measurements. The circumstances where it is useful to combine correlational

and causal evidence may be quite limited–perhaps only to situations where the researcher

is interested in quantifying the contrast between observational and experimental results.

Furthermore, converting an experimental d to the r scale involves making strong modeling

assumptions, as I detail in the next section. In circumstances where the exercise is indeed

relevant, one can imagine that individuals in the treatment and control conditions are

induced to receive distinct, fixed levels of a variable X. Specifically, suppose that the

individuals in the control condition all receive a certain fixed level (call it q) of X, so that

xi = q for i = 1, ..., n1, while the individuals in the treatment condition all receive a fixed

level of X that is higher by w units, so that xi = q + w for i = n1 + 1, ..., n. The

standardized mean difference can then be interpreted as the causal effect on Y of increasing



CONVERTING FROM D TO R TO Z 9

X by the treatment-control differential w; thus, the results of the experiment may bear on

the relationship between X and the outcome variable Y .

The substantive interpretation of the standardized mean difference d, as well as the

formula for converting it to r, will depend on one’s assumption about the size of the

treatment-control differential. For all but the simplest interventions, it may be difficult to

identify a reasonable value for w that captures the difference between treatment and

control conditions in terms of a single quantitative variable. Still, without making some

such assumption, one is left without any way of relating the experimental findings to the

association between continuous variables. The model described in the following section

provides this connection by relying on an assumption about the magnitude of w.

Example 2. Edmunds (2008) studied the effect of a teaching intervention that was

designed to support participants’ senses of autonomy, relative to a conventional teaching

style, in the context of an exercise class. The outcome measure was a scale that measured

individuals’ intentions to continue exercising. The investigators reported that, after 10

weeks of treatment, n1 = 31 individuals in the control group had a mean score of ȳ1 = 4.67

(s1 = 1.52), while n2 = 25 individuals in the treatment group had a mean score of

ȳ2 = 5.67 (s2 = 1.33) (Edmunds, 2008, Table 2). Using the reported statistics, the

standardized mean difference can be calculated according to Equation (3): d = 0.70. Over

the course of the experiment, the investigators also collected self-reports of autonomous

support. I will use these data to inform an assumption about the treatment-control

differential w. After 5 weeks of treatment, the difference between treatment and control

groups was w = 2.18 SDs; after 10 weeks, the difference was reduced to 1.22 SDs

(Edmunds, 2008, Table 1). Hagger and Chatzisarantis (2009) used the results of the study,

along with the results described in Example 1, in a meta-analysis of the relationship

between autonomous support and planned exercise behavior.
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Dichotomization

Though I refer to it as a design, dichotomization is more precisely a data-analysis

technique; it is a common practice in psychology (Decoster, Iselin, & Gallucci, 2009;

MacCallum, Zhang, Preacher, & Rucker, 2002). Procedurally, data collection is identical to

the bivariate sampling design: a researcher measures two continuous variables X and Y on

a set of n individuals, producing data (xi, yi) for i = 1, ..., n. Rather than computing a

correlation coefficient directly, the researcher creates an auxiliary variable for data analysis

purposes. For some cutoff value c1, the auxiliary variable is set equal to 0 for all cases with

xi ≤ c1 and equal to 1 for xi > c1. The researcher can choose a cutoff value in one of two

ways: based on prior information about the population distribution of X or based on the

sample data. For instance, a population-based cutoff might be chosen based on the scale

median reported in a large norming study; in contrast, a sample-based cutoff might be

chosen based on the median value of X in the sample (this is known colloquially as a

“median split”).

After creating the auxiliary variable, the researcher calculates means and standard

deviations of the yi’s in the two groups defined by unique values of the auxiliary variable.

For ease of notation, suppose that the first n1 cases have xi ≤ c1 and the remaining

n2 = n− n1 cases have xi > c1. The sample means and variances in each group are then

calculated just as in Equation (2). The researcher might report these four values directly,

or might instead report a standardized mean difference effect size d, calculated as in

Equation (3).

Example 3. Mussweiler, Gabriel, and Bodenhausen (2000) studied the relationship

between self-esteem and the extent to which individuals focus on gender as part of their

self-identity. In a preliminary study to assess the baseline focus on gender identity, the

authors divided their sample of n = 27 individuals into two groups with low (n1 = 19) and

high (n2 = 8) levels on a scale measuring self-esteem; the cutoff point was chosen based on

the median of a larger study. The authors reported that individuals in the high self-esteem
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group “focused more on their gender (M = 2.16) than did [individuals in the low

self-esteem group] (M = 3.09), t(25) = 2.71, p < .01” (Mussweiler et al., 2000, p. 401).

One can recover the sample d statistic from the reported t value using the algebraic

relationship between the two statistics:

d = t

√
1
n1

+ 1
n2

= 2.71
√

1
19 + 1

8 = 1.14

(for details, see Borenstein, 2009, Table 12.1).

Extreme groups

The extreme groups design falls into a category of procedures sometimes described as

“direct range enhancement” (Hunter & Schmidt, 2004, p. 104). Preacher, Rucker,

MacCallum, and Nicewander (2005) review the use of and rationale for the design in

psychological research. For studying the relationship between continuous two variables X

and Y , an extreme groups design typically entails the following: To begin, the investigator

measures X on an initial sample of m individuals. Based either on known population

values or on sample quantiles, two cutoff values c1 and c2 ≥ c1 are chosen to define subsets

of individuals with low and high values of X. From the full set of m individuals, Y is

measured only on these two subsets: the n1 individuals with xi ≤ c1 and the n2 individuals

with xi > c2. No data on Y are collected from the remaining cases that have c1 < xi ≤ c2;

measured X values from these cases are discarded from the analysis.

As with the dichotomization design, there are two slightly different methods of

choosing cutoff values. First, an investigator might define population cutoffs based on

known quantiles of the X distribution. For instance, if X is a widely used psychological

scale, the experimenter might use as cutoffs the published values c1 and c2 corresponding to

the lower and upper quartiles. Alternately, the investigator might define sample cutoffs by

taking the n1 lowest sample values and the n2 highest sample values of X.

Studies using the extreme groups design often report the standardized mean

difference between groups as a summary effect size and in a test of the hypothesis that X
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and Y are uncorrelated.1 As with the dichotomization design, suppose that cases are

arranged so that y1, ..., yn1 are in the lower group and yn1+1, ..., yn1+n2 are in the higher

group. Sample means and variances of Y are calculated as in Equation (2); based on these

values, the standardized mean difference is then calculated as in Equation (3).

Example 4. Goldinger, Kleider, Azuma, and Beike (2003) conducted a study using

an extreme groups design. These researchers used a memory span task to select

participants with high and low levels of working memory. They then gave the selected

participants the further task of reviewing hypothetical court cases and assigning monetary

damages, the outcome of which can be interpreted as a measure of pro-social behavior. To

begin, the researchers measured working memory on an initial sample of 138 participants.

Of these, the bottom and top 25% of participants were assigned to the low and high

working memory groups, respectively, resulting in 35 participants in each group (only these

70 participants reviewed the hypothetical court cases). The authors report an F -test for

the difference in average monetary compensation between the low- and high-memory span

groups: “A main effect of [memory] span, F (1, 68) = 18.2, p < .001, showed that high-span

participants generally awarded more money than low-span participants” (Goldinger et al.,

2003, p. 82). Using the F statistic and the reported sample sizes, the standardized mean

difference can be determined using

d =
√
F
( 1
n1

+ 1
n2

)
=
√

18.2× 2
35 = 1.02

(Borenstein, 2009, Table 12.1).

Other recent examples of the extreme groups design can be found in Bernichon,

Cook, and Brown (2003); Cross, Morris, and Gore (2002); Deffenbacher, Huff, Lynch,

Oetting, and Salvatore (2000); Eys, Hardy, Carron, and Beauchamp (2003); Pontari and

Schlenker (2000); Skinner and Drake (2003); Verplanken and Holland (2002); and Stafford

and Gonier (2004).
1This practice is common despite the fact that using the standardized mean difference is inferior to other

analytic approaches (Alf & Abrahams, 1975).
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Dichotomization as a special case. The description of the extreme groups

design encompasses dichotomization as a special case. Note that if c1 = c2, then

m = n1 + n2 and both X and Y are measured on the entire sample of cases. No data are

discarded, and the sample means, variances, and d statistic are calculated for the lower and

upper groups just as before. Due to this relationship between designs, I use the more

general formulation of the extreme groups design to develop models and conversion

formulas, then simply apply those formulas to the dichotomization design.

Converting from d to r

In principle, one might use any of the four designs to estimate the same correlation

parameter. In order to maintain such comparability, I use a common set of modeling

assumptions for all four designs, assuming throughout that the researcher is interested in

studying the correlation between two continuous variables X and Y . For each design, I

assume that variables of interest follow a bivariate normal distribution with population

means E(X) = 0, E(Y ) = µy, population variances Var(X) = 1, Var(Y ) = σ2
y, and

population correlation cor(X, Y ) = ρ.2 Thus, the target parameter to be estimated in each

design is ρ.

In what follows, I employ some additional notation for describing normally

distributed random variables with mean zero and variance one. I denote the probability

density function for a standard normal random variable by φ(x) = 1√
2π exp(−x2/2), the

corresponding cumulative distribution function by Φ(x) =
∫ x
−∞ φ(x)dx, and the inverse of

the cumulative distribution (sometimes known as the quantile function) by Φ−1(p).3

2Fixing the mean and variance of X does not reduce generality.
3Microsoft Excel (2010) users will know these functions by the names φ(x) = NORM.S.DIST(x, FALSE),

Φ(x) = NORM.S.DIST(x, TRUE), and Φ−1(p) = NORM.S.INV(p). Corresponding functions in earlier

versions of Excel bear similar names.
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Bivariate sampling

In the bivariate sampling design, the sample Pearson correlation rp is calculated

directly from the observations (xi, yi), i = 1, ..., n following Equation (1). Assuming that

the data represent independent observations from the bivariate normal distribution as

described above, no conversion is necessary because rp provides a direct estimate of ρ.

Conversion from r to z will be addressed in the next section.

Controlled experiment

For the controlled experimental design, I assume that the observations in the control

group all have xi = q for i = 1, ..., n1, while the observations in the treatment group all

have xi = q + w for i = n1 + 1, ..., n, where q and w are known values. Since I have

assumed that X follows a standard normal distribution, the treatment-control differential

w should be understood as being measured in standard deviation units of X. For instance,

w = 2 means that the treatment group receives a value of X that is 2 standard deviations

higher than the value received by the control group.

As previously, I assume that X and Y are bivariate normally distributed in the

population. It then follows that, for the fixed value X = q, the outcome observations in the

control group y1, ..., yn1 are normally distributed with mean µy + ρσyq and variance

σ2
y(1− ρ2). Similarly, for the fixed value X = q + w, the outcome observations in the

treatment group yn1+1, ..., yn are normally distributed with mean µy + ρσy(q + w) and

identical variance σ2
y(1− ρ2). Under these assumptions, an estimate of ρ can be

constructed as

rce = ȳ2 − ȳ1√
(ȳ2 − ȳ1)2 + w2s2

p

= d√
d2 + w2

. (4)

I denote this estimator rce to distinguish it from rp as given in Equation (1) and from the

other conversion formula given below. The derivation of rce is discussed in Appendix A.

Because rce is an estimate of the population correlation ρ between X and Y , it is on the

same scale as a Pearson sample correlation, and thus suitable for comparison and

meta-analysis with other correlation coefficients. However, the simulation studies below
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reveal that rce has substantial biases when the treatment-control differential w is small in

magnitude, even for large sample sizes.

It should be noted that this conversion formula differs from the methods discussed in

Borenstein (2009, p. 234) and in Hunter and Schmidt (2004, pp. 277-282). Though they

are similar in form to Equation (4), both of those conversion formulas replace w2 with the

factor a = (n1 + n2)2/(n1n2), which has to do with the proportion of observations in the

treatment and control groups. However, in controlled experiments, these proportions are

arbitrary (and often equal) and do not provide any information about the magnitude of the

treatment-control differential on the continuous variable X. The minimum possible value

of the factor a is achieved when the two groups are of equal size. In this case, a = 4, which

is equivalent to assuming that the absolute value of the treatment-control differential is

w = 2. For treatment-control differentials less than 2, results based on the conversion

formulas of Borenstein (2009) or Hunter and Schmidt (2004) will differ from results based

on Equation (4).

Extreme groups (and dichotomization)

The data from an extreme groups design (and also that from a dichotomization

design) can be modeled by treating the cutoff values c1 and c2 as fixed quantities. For

modeling purposes, I assume that the lower cutoff c1 corresponds to the pth1 quantile of X,

while the upper cutoff c2 corresponds to the (1− p2)th quantile of X. For instance, if c1

and c2 correspond to the lower and upper tertiles of a scale, then p1 = 1
3 and

p2 = 1− 2
3 = 1

3 . Alternately, if sample cutoffs are defined by taking the n1 lowest values

and the n2 highest values from the m sample cases with measured values of X, then

p1 = n1/m and p2 = n2/m. Because the modeling assumptions maintain that X is drawn

from a standard normal distribution, it follows that c1 = Φ−1(p1) and c2 = Φ−1(1− p2).

Given p1 and p2, the values y1, ..., yn1 from the lower group are independent draws

from the distribution of Y , conditional on the fact that X ≤ Φ−1(p1); similarly, the values

yn1+1, ..., yn from the upper group are independent draws from the distribution of Y ,
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conditional on the fact that X > Φ−1(p1). The distributions of (Y |X < Φ−1(p1)) and

(Y |X > Φ−1(1− p2)) are known as skew-normal distributions (Arnold, Beaver, Groeneveld,

& Meeker, 1993; Azzalini, 1985). Known properties of the skew-normal distribution can be

used to derive a formula for converting a reported d statistic into an r statistic; for details

of the derivation, interested readers should consult Appendix B.

To construct an estimate of ρ, I first need to define the auxiliary constants

f = n1/(n1 + n2), vj = φ(cj)/pj for j = 1, 2, and

a = (v1 + v2)2

fv1(v1 + c1) + (1− f)v2(v2 − c2) ,

b = 1√
fv1(v1 + c1) + (1− f)v2(v2 − c2)

. (5)

Note that f , c1, c2, v1, and v2 are all known quantities, depending only on the sample sizes

n1, n2 and the proportions p1, p2 that define the cutoff values used in the design. Therefore,

a meta-analyst should be able to calculate the constants a and b based only on information

in a published article or research report. Using the constants a and b, a reported value of d

can be converted to a correlation using

reg = bd√
d2 + a

. (6)

I denote this estimate reg to distinguish it from the other correlation coefficients given in

Equations (1) and (4). Because reg is an estimate of ρ, it is on the same scale as the other

correlation coefficients rp and rce; therefore, reg is suitable for comparison or meta-analysis

with these other correlation coefficients.

The formula for converting from a d statistic to reg can be understood as a two-step

process. First, d is converted to an estimate of the point-biserial correlation between Y and

an indicator variable for the lower group versus higher group, using the formula

rpbs = d√
d2 + a

. (7)

However, the target parameter is the correlation ρ between the continuous measures X and

Y , rather than the correlation between Y and group membership. In order to recover an
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estimate of ρ, it is therefore necessary to multiply rpbs by the constant b, producing the

estimator given in (6).

Figure 1 plots the values of the constants a and b as functions of the cutoff

proportions p1 and p2. These constants can be expressed more simply in some common

special cases. The first special case is the balanced extreme groups design, in which p1 = p2

and n1 = n2; this case was studied by Feldt (1961). For balanced extreme groups,

c1 = −c2, v1 = v2, and f = 1/2; therefore, the constants reduce to a = 4v1/(v1 + c1) and

b = [v1(v1 + c1)]−1/2. As seen in Figure 1a, a is always greater than or equal to 4 and is at

minimum when p1 = p2 = 1/2. As seen in Figure 1b, b decreases towards 1 as p1 decreases

towards 0; thus, the bias-correction factor becomes less consequential for designs with more

extreme cut-offs.

The dichotomization design is another special case, in which p1 = 1− p2 and f = p1.

For the dichotomization design,

a = 1
p1(1− p1) , b = 1

v1

√
1− p1

p1
. (8)

Here, reg is equivalent to the estimator proposed by Hunter and Schmidt (1990). As

depicted in Figure 1b, the bias correction factor b is always greater than 1.25 for

dichotomization designs, and increases as the design becomes more imbalanced. Therefore,

bias correction is crucial with this design.

A final special case is the median split, which can be viewed as both a

dichotomization and a balanced extreme groups design. If p1 = p2 = 1
2 and n1 = n2, then

c1 = 0 and the constants simplify further to a = 4 and b = 1/v1 =
√
π/2 ≈ 1.253.

It may occur to statistically inclined readers that the formula for reg could be

improved by replacing constants a and b with other constants so that the numerator and

squared denominator in (6) are both exactly unbiased. More precisely, one might use

constants an and bn such that (i) E[(ȳ2 − ȳ1)2 + ans
2
p] does not depend on ρ and (ii)
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bnE(ȳ2 − ȳ1)/
√
E[(ȳ2 − ȳ1)2 + ans2

p] = ρ. Constants satisfying these criteria are given by

an = (n1 + n2 − 2)
((v1 + v2)2 − 1

n1
v1(v1 + c1)− 1

n2
v2(v2 − c2)

(n1 − 1)v1(v1 + c1) + (n2 − 1)v2(v2 − c2)

)
,

bn =

√
1
n1

+ 1
n2

+ an

v1 + v2
.

The constants given in (5) are the limits of an and bn as n1, n2 increase towards infinity in

fixed proportion. Based on simulation results, it appears that using an and bn in (6)

reduces the estimator bias under certain circumstances, but also increases the

mean-squared error. The differences are generally so slight as to be inconsequential;

therefore this refinement is not considered further.

Converting from r to z

There is debate about whether correlation coefficients are best meta-analyzed on the

natural scale or after applying Fisher’s z-transformation, which is defined as

z(r) = 1
2 log 1 + r

1− r , (9)

where log denotes the natural logarithm. Note that the natural r scale ranges from -1 to 1,

while z(r) takes values of r in the interval (−1, 1) and produces values in the range from

−∞ to ∞. Hunter and Schmidt (2004) advocate meta-analyzing correlations on the

natural scale, while Hedges and Olkin (1985) propose applying the z-transformation. The

latter authors recommend z-transformation because the resulting estimator is closer to

being normally distributed and has a variance that does not depend as strongly on ρ, both

of which are desirable properties for meta-analysis. Of course, the transformed estimator is

no longer an estimate of ρ, but rather of z(ρ). For random-effects meta-analysis, the debate

over which method is preferable would seem to hinge on differences in maintained modeling

assumptions, and specifically on whether the prior distribution of the random effects is on

the scale of ρ or of z(ρ) (Field, 2005; Hafdahl, 2009; Hafdahl & Williams, 2009; Schulze,

2004). Rather than weighing in on the debate regarding the merits of z-transformation,

this section merely provides conversion formulas that can be applied if deemed appropriate.
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Bivariate sampling. Fisher’s z-transformation was developed for use with

Pearson sample correlation coefficients, so Equation (9) is directly applicable to rp effect

sizes from bivariate sampling designs. For ease of notation, I denote z(rp) as zp. For the

other designs, use of Fisher’s z-transformation warrants further consideration, because the

transformation does not have the same normalizing and variance-stabilizing properties

when applied to other correlation coefficients.

Controlled experiment. At least in terms of algebra, it is possible to use

Equation (9) to transform a correlation estimate rce from a controlled experiment because

the absolute value of rce will never exceed 1. I denote z(rce) as zce.

Extreme groups (and dichotomization)

Applying Fisher’s z-transformation to reg from an extreme groups or dichotomization

design presents further difficulties, even on the basic level of algebra, because the absolute

value of reg may exceed 1. Since z(r) is undefined for values |r| ≥ 1, applying the

transformation directly to reg is not always possible. To see that values of reg can fall

outside of the domain of z(r), first note that rpbs can take values anywhere in the range

(-1,1) because d can be arbitrarily large; rpbs will never fall outside (-1,1), though, because

a is positive and thus d (the numerator of rpbs) will always be less than
√
d2 + a (the

denominator or rpbs). Next, note that bias-correcting rpbs to get reg involves multiplication

by a constant b that is always greater than one (as is apparent in Figure 1b). It follows

that, for any values of p1 and p2, the absolute value of reg may be almost as large as b, and

therefore may be larger than one. Due to this possibility, transforming reg to the z scale

must involve more than just applying the formula.

As shown in the simulation studies discussed below, values of |reg| greater than one

have a non-negligible probability of occuring in small samples, especially when ρ is large in

magnitude. If one is meta-analyzing correlation estimates on the natural scale, estimates

falling outside the range are not necessarily problematic. In contrast, if using the

z-transformation, such estimates must be handled in some fashion. Here I consider two
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intuitive approaches to doing so.

The first approach is simply to truncate reg at some value close to 1. For some

constant s > 0, define

zSs (reg) = z
(
max[min(reg, 1− 10−s), 10−s − 1]

)
. (10)

For small or moderate values of ρ, truncation should have negligible impact on the

distribution of zSs because few values of reg will fall outside the range of

(10−s − 1, 1− 10−s). Truncation will have greater consequences if the true value of ρ is very

large. In the simulation study described below, a value of s = 12 is used, which

corresponds to a maximum possible value of 14.16 for zS12.

The second approach is to use a Taylor series approximation to z(·) around the point

rpbs = reg/b. For a fixed number of terms t, define the function

zTt (r, b) =
t∑

k=0

(b− 1)k(r)k
k! z(k)(r), (11)

where z(k)(·) is the kth derivative of z(·). Table 2 provides the first five derivatives of z(·).

Recall that rpbs will always fall within (-1,1); thus, z(k)(rpbs) and zTt (rpbs, b) will always be

defined. The Taylor series estimator zTt will provide a close approximation to z(reg) when

|ρ| is not close to one and when b is small. For larger sample sizes, the number of terms

must be increased to maintain the consistency of the transformed estimator. In the

simulation study below, t = 5 is used.

Variance estimation

In this section, I present the large-sample variances of the transformed r and z

estimators for each of the four designs.4 Large-sample variances are approximations, but

are used commonly in meta-analysis because exact results are seldom available. All of the
4By large-sample variance, I mean in technical terms that for a sequence of random variables

Q1, Q2, Q3, ..., if [Qn − E(Qn)]/
√
V Q

n converges in distribution to a standard normal random variable as

n increases, then V Q
n is a large-sample variance of Qn.
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large-sample variances presented here were derived using the delta method (for details, see

Casella & Berger, 2002, p. 243).

Bivariate sampling

Hedges and Olkin (1985) detail the properties of rp, assuming as here that X and Y

are bivariate normally distributed. They note in particular that rp has a small bias, the

magnitude of which depends on sample size n, and that rp has large-sample variance

Var(rp) ≈ V r
p =

(
1− r2

p

)2

n
(12)

(Hedges & Olkin, 1985, p. 226).5 Note that this variance depends on the value of the

correlation, which is one motivation for converting from r to Fisher’s z scale for purposes of

meta-analysis. z-Transformation removes this dependence, so that the large-sample

variance of zp is

Var(zp) ≈ V z
p = 1

n− 3 . (13)

Using n− 3 rather than n in the denominator provides a closer approximation to the exact

variance of zp in small samples (Hedges & Olkin, 1985, p. 227).

Controlled experiment

The large-sample variance of rce can be derived by first considering the variance of

the d statistic from a controlled experimental design. Under the assumptions of this design,

the large-sample variance of d is

V d
ce = n1 + n2

n1n2
+ d2

2(n1 + n2) , (14)

(Borenstein, 2009, p. 226). Applying the delta method to the transformation formula given

in Equation (4) yields the large sample variance of rce:

V r
ce = w4

[d2 + w2]3

(
n1 + n2

n1n2
+ d2

2(n1 + n2)

)
. (15)

5Some textbooks present large-sample variances in terms of the population parameters involved; for

instance, Hedges and Olkin (1985) gives the large-sample variance of rp as (1−ρ2)2/n. In all of the formulas

in this section, I substitute sample estimators in place of the corresponding parameters, because this is how

large-sample variance estimates will actually be computed.
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Another application of the delta method, this time to the z-transformation function given

in Equation (9), yields the large-sample variance of zce:

V z
ce = 1

d2 + w2

(
n1 + n2

n1n2
+ d2

2(n1 + n2)

)
, (16)

which is somewhat simpler than V r
ce.

Extreme groups (and dichotomization)

Large-sample variance expressions for effect size statistics from the extreme groups

design (including the dichotomization design as a special case) can be developed along the

same lines as for the controlled experimental design. I first give expressions for the

large-sample variance of the d statistic from an extreme groups design, then use these to

express the large-sample variances of reg and zeg, where zeg is based on either of the two

transformation approaches discussed in the previous section. Unfortunately, a general

expression for the large-sample variance of d involves some rather cumbersome algebra.

Rather than present it here, I instead give expressions for the special cases of balanced

extreme groups designs, dichotomization designs, and median splits, all of which are

somewhat more tractable. Appendix B provides a general expression for the large-sample

variance of d from an extreme groups design.

Consider first the balanced extreme groups design, where p2 = p1 and n1 = n2. With

the auxiliary constants a and b as defined in Equation (5), the large-sample variance of d

from this design is:

V d
eg = 1

n

(
4 + d2

2 − d
4a− ab2 + 4

a2 − d6 64 + 64a+ 4a2 − 48ab2 − 4a2b2

64a3

)
. (17)

Next, consider the dichotomization design and recall that c1 = Φ−1(p1) and v1 = φ(c1)/p1.
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If X is dichotomized at the pth1 quantile so that p1 = 1− p2 = n1/n, then

V d
eg = 1

n

[
1

p1(1− p1) − d
2v1(9p2

1 − 9p1 + 2) + 2c1(1− p1)(1− 2p1)
2v1p1(1− p1)

− d4

v2
1

(
2v2

1(3p2
1 − 3p1 + 1) + 3c1v1(1− p1)(1− 2p1)− (1− c2

1)(1− p1)2
)

− d6p1(1− p1)
4v3

1

(
2v3

1(5p2
1 − 5p1 + 2) + 8c1v

2
1(1− p1)(1− 2p1) + (5c2

1 − 4)v1(1− p1)2
)]
.

(18)

Finally, if d is calculated using a median split so that p1 = p2 = 1
2 and n1 = n2, a further

simplification is obtained. In this case,

V d
eg = 1

n

(
4 + d2

2 − d
4 4− π

8 + d6π − 3
32

)
.

Applying the delta method to the transformation functions given in (6) and (9)

produces large-sample variances for reg and zeg, respectively. The large sample variance of

reg can be expressed as a function of the auxiliary constants a and b and the large-sample

variance of d:

V r
eg = a2b2

(d2 + a)3V
d
eg. (19)

The large sample variance of zeg can be expressed in similar fashion:

V z
eg = a2b2

(d2 + a)(d2(1− b2) + a)2V
d
eg. (20)

For calculation purposes, one should first find V d
eg using one of the formulas given in (17) or

(18) (or the general formula in Appendix B), then use this computed value to evaluate

Equation (19) or (20).

Even in the special cases considered here, the large-sample variance of d involves

lengthy formulas. Consequently, the working meta-analyst may be inclined to use other,

simpler formulas as rough approximations, and it is instructive to consider how accurate

doing so would be. First, one might think to use the simpler formula for the variance of d

from a controlled experiment V d
ce, as given in Equation (14). Note that in a balanced
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extreme groups design where p1 = p2 and f = 1/2, the variance under normality is equal to

V d
ce = 1

n

(
4 + d2

2

)
,

which is the same as the two leading terms in (17). Thus, the discrepancy between this

approximation and the actual Vd will depend on the magnitude of d and on the value of p1,

which affects the auxiliary quantities a and b.

Figure 2 plots the ratio of V d
ce to V d

eg as a function of ρ (restricting to ρ ≥ 0 because of

symmetry). Figure 2a presents the balanced extreme groups design, assuming p2 = p1 and

n2 = n1. In the balanced extreme groups design, for p1 = 1/3 or more, the approximation

V d
ce exceeds the true variance, particularly for ρ greater than 0.6; however, for smaller

values of ρ, the approximation is quite close. Furthermore, as p1 decreases, the controlled

experiment variance provides a very close approximation to the true variance over a wider

and wider range of values for ρ. Thus, using V d
ce in place of V d

eg in Equations (19) or (20)

might provide a reasonable approximation for the extreme groups design, particularly for

more extreme cutoffs. Such is not the case in the dichotomization design, presented in

Figure 2b. Here, the approximation becomes progressively worse for smaller values of p1.

It is similarly instructive to compare the true large-sample variance V r
eg to other

possible approximations that are simpler to compute. For instance, Hunter and Schmidt

(2004) propose to use the large-sample variance from a bivariate sampling design V r
p as an

estimate of Var(reg) for dichotomization designs. Figure 3 plots the ratio of V r
p to V r

eg as a

function of ρ, and is constructed in the same fashion as Figure 2. For both the balanced

extreme groups design (Figure 3a) and the dichotomization design (Figure 3b), it is

apparent that V r
p provides a very poor approximation to the true large-sample variance.

Simulation study

The converted effect size estimators rce and reg are both based on large-sample

approximations, rather than exact distribution theory. It is therefore important to study

their statistical properties for sample sizes that are likely to be encountered in practice. To
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do so, I conducted a set of simulations based on controlled experiments, dichotomization,

and extreme groups designs. To provide points of reference, I also simulated the Pearson

correlation coefficient rp from a bivariate sampling design. Table 3 summarizes the

structure of the simulation for each of the four study designs. For each combination of

design parameters, the number of iterations was taken as 107/n. All of the simulations and

calculations were performed with R, version 2.15.0.

For each of the designs, I simulated several quantities. First, I computed the biases of

the transformed r and z estimators.6 For dichotomization and extreme groups designs, I

also simulated the probability that |reg| ≥ 1 in order to establish the extent to which

alternative z-transformation methods are needed. Finally, I calculated the relative biases of

the large-sample variance estimators, where the relative bias of an estimator for Var(r) is

defined as

Relative Bias(V r) = E(V r)
Var(r) − 1,

and is similarly defined for estimators of Var(z). For the dichotomization and extreme

groups designs, it is also of interest to compare the full large-sample variances to the

approximations discussed in the previous section. This section reports only selected

simulation results, focusing on those where a meta-analyst will face choices about how to

perform an analysis. Full simulation results, with accompanying R code, are available upon

request.

Bivariate sampling

For the bivariate sampling design, the simulation consisted of a 96× 4 factorial

structure; true correlations ρ varied from 0 to 0.95 in increments of 0.01, while total sample

size n was set equal to 20, 40, 80, or 160 in order to represent studies ranging from small to

large. Figure 4 presents simulation results for this study design, which are useful as

reference points for interpreting the simulation results regarding the other study designs.
6Note that z estimators are compared to z(ρ), rather than to ρ. That is, for a given true correlation ρ,

the bias of z is defined as the expected value of z minus z(ρ).
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As seen in Figures 4a and 4b respectively, the Pearson sample correlation coefficient rp and

the z-transformed statistic zp both have biases of negligible magnitude, even at the

smallest sample size considered; when n = 20, the absolute bias of rp is never more than

0.011, while the absolute bias of zp is never more than 0.027. The large-sample variance of

rp has a negative bias that is most pronounced when ρ = 0 (Figure 4c), while the

large-sample variance of zp has a small, positive relative bias that increases with ρ (Figure

4d). The greater accuracy of V z
p versus V r

p provides further justification for using

z-transformation in meta-analyses of correlations.

Controlled experiment

For the controlled experimental design, the simulation consisted of a 96× 4× 3

factorial structure; in addition to varying the true correlation ρ and the sample size n, the

simulations examined treatment-control differentials w of 0.5, 1.0 and 2.0. Figure 5

displays the simulation results, and is organized just like Figure 4. Based on Figure 5a, the

bias of rce is larger than that of rp and is more pronounced for smaller values of the

treatment-control differential. For w = 0.5, rce has a large, negative bias, even at the largest

sample size considered; unfortunately, this bias would be difficult to correct due to its

non-linear relationship with ρ. A similar pattern of results holds for the bias of zp (Figure

5b). As with the bivariate sampling design, the large-sample variance of rce (V r
ce, Figure 5c)

is in general less accurate than the large-sample variance on the z scale (V z
ce, Figure 5d).

Dichotomization

The simulations for the dichotomization design varied the true correlation ρ, the

sample size n, the cutoff percentiles p1, and whether the cutoffs were population- or

sample-based, producing a 96× 4× 4× 2 factorial structure. Results for the smallest cutoff

value p1 = 1
8 are not presented, as such an extreme dichotomization seems unlikely to be

used in practice. In the data-generating model for the dichotomization design, I assumed

that observations in each group are drawn from a skew-normal distribution with fixed

truncation points (i.e., a population cutoff), but in practice the truncation points are often
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based on sample percentiles (i.e., a sample cutoff). I therefore simulated both approaches.

Figure 6a displays the bias of reg versus ρ for the dichotomization design. Each panel

of the figure shows a different combination of the value of p1 and whether percentiles were

fixed or sample-based. Using a sample cutoff rather than a population cutoff results in

greater bias. The estimator bias is larger for more extreme cutoffs; for a cutoff p1 = 1
5 , the

most negative bias occurs when ρ is approximately 0.8. Note that if one were to ignore the

bias-correction factor b when calculating reg, the bias of the resulting estimator would be

more negative than the bias given here. Moreover, such bias would be present even in large

samples.

The simulations also examined the extent to which reg falls outside of the domain of

z(·). Figure 6b plots the probability that |reg| < 1 for 0.4 ≤ ρ ≤ 0.95, with varying levels of

p1 and n. The figure is based on using sample cutoffs; results with population cutoffs are

very similar. As one would expect, values of |reg| greater than one occur mostly for large ρ

and small sample sizes. For example, with a median split (p1 = 1
2) and n = 20,

Pr(|reg| ≥ 1) is less than 0.95 when ρ ≥ 0.8. Values outside of (-1,1) occur more frequently

for more extreme cutoffs. Overall, I would argue that having one in twenty estimates fall

outside of the domain of z(·) presents a sufficiently common problem that it warrants

further consideration; specifically, different approaches to z-transformation should be

considered carefully.

In a previous section, I outlined two different methods of z-transformation that deal

with the possibility that |reg| may be greater than or equal to one. Figure 6c compares the

bias of both of these, plotting the bias of the truncated estimator zS12 and the Taylor series

approximation zT5 using sample cutoffs; results for population cutoffs are similar but with

somewhat larger biases. The figure is restricted to ρ ≥ 0.5 because the bias of each

estimator is very small except at large values of ρ. Across levels of ρ, p1, and n, zT5 has

smaller biases than zS12. This is perhaps surprising, considering that the Taylor series

approximation about rpbs/b always under-estimates z(·) for high values of ρ. It seems that



CONVERTING FROM D TO R TO Z 28

applying the z-transformation directly to reg introduces a positive bias, which is partially

mitigated by using the Taylor series approximation. However, for the Taylor series with a

fixed number of terms, it should be noted that zT5 will become negatively biased as sample

size grows. This can be observed in the lower panels of Figure 6c, where the bias of zT5

bends below zero for larger sample sizes. As noted previously, the bias from the

approximation can be removed by using more terms in the Taylor series.

Finally, the simulations examined the performance of several estimators for the

variance of reg and zeg, focusing on zT5 due to its smaller bias. In particular, I compared the

estimators using the full large-sample variance V d
eg, as given in (18) to those that use the

approximation based on a controlled experiment V d
ce, as given in (14). Figures 7a and 7b

display the relative bias of V r
eg versus V r

ce and V z
eg versus V z

ce, respectively, for varying sample

sizes. For sake of space, the figures are restricted to sample cutoffs with p1 = 1
2 ; results for

population cutoffs and other values of p1 are qualitatively similar. Additionally, Figure 7b

omits n = 20 because both variance estimators are highly biased for this sample size. Based

on Figure 7a, the actual large-sample variance V r
eg is close to unbiased for all but very high

values of ρ, whereas the controlled experiment approximation V r
ce tends to over-estimate for

ρ > 0.4. A similar pattern holds in Figure 7b for the zeg variance estimators. Thus, V r
eg and

V z
eg are recommended for estimating Var(reg) and Var(zeg) from a dichotomization design.

However, it should be noted that V z
eg performs poorly for samples sizes less than n = 40.7

Extreme groups

The final set of simulations were for balanced extreme groups designs, assuming that

p1 = p2 and n1 = n2. The simulations were structured just as for the dichotomization

design, as a 96 (true correlation ρ) × 4 (sample size n) × 4 (cutoff percentile p1) × 2

(population versus sample cutoffs) factorial design. Results for p1 = 1
2 are not displayed

7As suggested by one anonymous reviewer, meta-analysts requiring an accurate variance estimate from

a small sample may want to consider using re-sampling techniques such as bootstrapping rather than using

V z
eg.
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because they are identical to those for the dichotomization design.

Figure 8a display the bias of reg versus ρ for the extreme groups design, and is

constructed just like Figure 6a. As with the dichotomization design, using sample cutoffs

results in somewhat larger biases than using population cutoffs. Still, reg has only small

bias, comparable to that of rp from bivariate sampling. For p1 = 1
3 , the absolute bias is

always less than 0.02 at the smallest sample size considered; furthermore, in designs using

sample percentiles, the remaining bias decreases with more extreme cut-points.

Figure 6b plots the probability that |reg| is less than one for 0.4 ≤ ρ ≤ 0.95, varying

levels of p1 and n while using sample cutoffs; the results with population cutoffs are very

similar. In contrast to the dichotomization design, values outside of the interval (-1,1) are

somewhat less of a concern in the extreme groups design; furthermore, more extreme

cut-points lead to lower probability of observing estimates outside of the interval.

Figure 8c compares the bias of the truncated estimator zS12 and the Taylor-series

approximation zT5 using sample cutoffs, and is constructed just like Figure 6c. As with the

dichotomization design, zT5 always has smaller biases than zS12. Thus, even though values of

reg will seldom fall outside the interval (-1,1), using the Taylor-series approximation to

Fisher’s z-transformation is still recommended.

Figures 9a and 9b display the relative bias of V r
eg versus V r

ce and V z
eg versus V z

ce,

respectively, for varying sample sizes and for population and sample cutoffs. For sake of

space, the figures are restricted to p1 = 1
3 ; results for other values of p1 are qualitatively

similar. As with the dichotomization design, Figure 9b excludes the smallest sample size

because both estimators are badly biased when n = 20. For designs with population

cutoffs, the actual large-sample variances V r
eg and V z

eg are close to unbiased for all but very

high values of ρ, whereas the controlled experiment approximations V r
ce and V z

ce tend to

over-estimate for ρ > 0.4. Therefore, in extreme groups designs with population cutoffs, the

full large-sample variances should be used rather than the approximations based on

controlled experiments. However, the opposite conclusion holds when sample cutoffs are
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used. In this case, V r
ce maintains smaller biases than V r

eg across values of ρ; the comparison

between V z
ce and V z

eg is similar. Therefore, if an extreme groups design uses sample cutoffs,

the simpler approximations V r
ce and V z

ce should be used for estimating the variances of reg

and zeg, respectively. Finally, it should be noted that both V z
eg and V z

ce are badly biased for

small sample sizes, just as in dichotomization designs.

Discussion

Based on the simulation study, there are several general recommendations for

meta-analytic practice. First, in extreme groups and dichotomization designs, the Taylor

series approximation given in Equation (11) should be preferred because using it produces

a less biased transformed statistic than using the original transformation function. Second,

for estimating the variance of reg and zeg, the full large-sample variance formulas should be

used rather than the approximations based on V d
ce or V r

p , except in extreme groups designs

that use sample cutoffs; in the latter circumstance, V d
ce should be used rather than V d

eg.

Finally, r- or z-type effect sizes that are converted based on standardized mean differences

from controlled experiments can be badly biased when the treatment-control differential is

small, and should be treated with caution.

These conclusions, and the simulation results in general, are limited in that only

balanced designs have been considered. In practice, one will certainly encounter designs

that have some degree of imbalance, such as controlled experiments with unequal sample

sizes or extreme groups designs with sample sizes in each group that are not proportional

to the cutoff percentiles. One may reasonably expect that the results and recommendations

given here will hold in designs with small or moderate degrees of imbalance. In very

imbalanced designs, such as dichotomizations that use p1 <
1
5 or extreme groups with very

unequal sample sizes, one should proceed with more caution and check the sensitivity of

conclusions to the various analytic approaches suggested here. The following section

illustrates some sensitivity analyses that the analyst should consider.
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Examples

This section revisits the motivating examples presented for each design,

demonstrating how to convert reported d statistics into r- and z-type effect sizes and how

to estimate the variance of those statistics. Readers may also want to consult the

spreadsheet available in the online supplementary materials, which implements all of the

formulas presented in previous sections and demonstrates the calculations used in the

following examples.

Example 1. Using a bivariate sampling design, Chatzisarantis et al. (2007)

reported a Pearson correlation of rp = 0.58 between intention to exercise and perceive

autonomy support. Inserting rp and n = 165 into Equation (12), the sampling variance of

this estimate is V r
p = (1− 0.582)2/165 = 0.0027, corresponding to a standard error of 0.05.

To convert the effect size and variance to the z-scale, I use the transformation formula

given in Equation (9), finding that zp = [log(1 + 0.58)− log(1− 0.58)]/2 = 0.66, and the

sampling variance from (13), finding that V z
p = 1/(165− 3) = 0.0062. Although zp is more

difficult to interpret than the effect size on the r scale, it is suitable for meta-analysis with

other z-transformed correlations.

Example 2. Edmunds (2008) used a controlled experimental design to manipulate

individuals’ senses of autonomous support and measure the effect on their intentions to

exercise. They reported statistics that correspond to a standardized mean difference effect

size of d = 0.70. To convert this effect size into an r or z that estimates the correlation

between autonomous support and intention to exercise, one must make an assumption

about the treatment-control differential induced by the experimental manipulation. Here, I

rely on the self-reported measures of autonomous support collected over the course of the

experiment. I use the larger differential of w = 2.18 in initial calculations, then check the

sensitivity of the estimates to a reduced treatment-control differential of w = 1.22.

Inserting d = 0.70 and w = 2.18 into Equation (4) leads to an estimated correlation of

rce = 0.70/
√

0.702 + 2.182 = 0.30. Using d and w with reported sample sizes of n1 = 31 and
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n2 = 25, the estimated variance of rce from Equation (15) is V r
ce = 0.0121, corresponding to

a standard error of 0.11. Transforming rce to a z effect size by using Equation (9), I find

that zce = 0.31, with a variance based on Equation (16) of V z
ce = 0.0146.

Repeating the calculations with a smaller value of the treatment control differential

w = 1.22 leads to rce = 0.50, V r
ce = 0.0222, zce = 0.54, and V z

ce = 0.0390. The estimated

effect sizes are much larger than those based on the larger treatment control differential,

with only slightly increased variances. This example illustrates that in controlled

experiments, conversion from d to r is very sensitive to one’s assumption regarding the

treatment-control differential.

Example 3. Mussweiler et al. (2000) described the association between self-esteem

and gender-focused self-identity by dichotomizing a measure of self-esteem and reporting

the difference in gender-focus between low and high self-esteem groups. Based on reported

statistics, the standardized mean difference between the groups is d = 1.14. The authors

dichotomized their sample using a cutoff point based on the median of a larger study, which

implies that p1 = 0.5. Because this study used a median split, the auxiliary constants are

particularly simple to calculate: a = 4 and b = 1.253. Using these auxiliary constants in

Equation (6) leads to the converted effect size of reg = 1.253× 1.14/
√

1.142 + 4 = 0.62.

This is an estimate of the underlying Pearson correlation between the continuous measures

of self-esteem and gender-focus. Note that if the bias-correction factor were ignored, one

would find that rpbs = 0.50, which is 20% smaller than reg.

To find the large-sample variance of reg, I first calculate the variance of the d statistic.

Unfortunately, the simplified special case formulas for dichotomization and median split

designs do not apply because the sample sizes of the two groups are not equal; using

Equation (27) from Appendix B, I find that V d
eg = 0.1954. Inserting this value together

with a = 4, b = 1.253, and d = 1.14 into Equation (19), I find that V r
eg = 0.0329. To

transform the r-type effect size to the z scale, I use the Taylor-series approximation formula

given in (11) and find that zT5 = 0.73 (using zS12 produces a nearly identical estimate that
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matches zT5 to four decimal places). The large-sample variance of this effect size can be

calculated by evaluating Equation (20) with V d
eg = 0.1954 to produce V z

eg = 0.0874.

Because the two groups created by the dichotomization were not of equal size

(n1 = 19 versus n2 = 8), it is sensible to check the sensitivity of one’s calculations to

different values of the cutoff p1. If the proportions in the two sample groups were

representative of the entire population, one would have instead p1 = 19/(19 + 8) = 0.70.

Based on this cutoff, the auxiliary constants are calculated as c1 = Φ−1(0.70) = 0.535 and

v1 = φ(0.535)/0.70 = 0.491. Inserting v1 = 0.491 and p1 = 0.70 into Equation (8) leads to

a = 4.796 and b = 1.321. Repeating the calculations with these auxiliary constants, I find

reg = 0.61, V r
eg = 0.0332, zT5 = 0.71, and V z

eg = 0.0846. These results are all quite similar to

those based on p1 = 0.5, implying that the transformed effect sizes are not sensitive to the

assumption about how the dichotomization was created.

Example 4. Goldinger et al. (2003) studied the relationship between working

memory and pro-social behavior using a balanced extreme groups design with

sample-based cutoffs. The researchers used the lower and upper quartiles as cutoffs,

corresponding to p1 = 0.25 and p2 = 0.25. The standardized mean difference between

groups on a measure of pro-social behavior was d = 1.02. To convert this effect size to an r

or z, I begin by calculating several auxiliary constants. First, based on the reported cutoffs

p1 = p2 = 0.25 and sample sizes n1 = n2 = 35, I calculate that c1 = Φ−1(0.25) = −0.674

and v1 = φ(−0.674)/0.25 = 1.271; because the design is balanced, it follows that

c2 = −c1 = 0.674 and v2 = v1 = 1.271. Based on these constants and Equation (5), the

further auxiliary constants are a = 4× 1.271/(1.271− 0.674) = 8.522 and

b = [1.271× (1.271− 0.674)]−1/2 = 1.148. Inserting the calculated values of a, b, and d into

the conversion formula given in (6) yields reg = 0.38. Note that ignoring the bias correction

factor would produce the estimate rpbs = 0.33, which is more than 10% smaller than reg.

Applying the Taylor series approximation to Fisher’s z-transformation given in (11), I find

that zT5 = 0.40. (The truncation approach produces an estimate zS12 that differs from zT5 by
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less than 10−4.)

Next, I calculate variance estimates for reg and zeg using the actual large-sample

variance formulas and compare these to the naive approximations based on V d
ce. Using

d = 1.02 along with the calculated values of a = 8.522 and b = 1.271, Equation (17)

evaluates to V d
eg = 0.0643. In this case, the naive approximation is quite close:

V d
ce = 0.0646. Together with calculated values of a, b, and d, inserting the value

V d
eg = 0.0643 into Expressions (19) and (20) yields V r

eg = 0.0070 and V z
eg = 0.0096, which

correspond to estimated standard errors of 0.08 and 0.10, respectively. Finally, note that

using the naive approximation V r
p as an estimate of the variance of reg is not advised: in

this example, Equation (12) evaluates to V r
p = 0.0105, which is nearly 50% larger than V r

eg.

General discussion

This paper has presented methods for converting effect sizes from d to r to z when

the d statistics come from controlled experiments, dichotomizations, or extreme groups

designs. For the latter two study designs, the general formulation of the data-generating

model illustrates the connection between the conversion formula originally derived by Feldt

(1961) for balanced extreme groups designs and the formula proposed by Hunter and

Schmidt (1990) for dichotomization designs.

Currently, the literature on meta-analytic methods offers conflicting guidance

regarding effect size conversion, with different schools of advice regarding the importance of

bias correction and the appropriate formulas for variance estimation. The theoretical and

simulation results presented in this paper suggest that each of these schools needs some

modification, particularly regarding the following four aspects. First, some traditions of

meta-analysis ignore the bias in the point-biserial correlation coefficient as an estimate of

an underlying population correlation (e.g., Borenstein, 2009; Lipsey & Wilson, 2001). In

contrast, the above results demonstrate that an approximately unbiased estimator can be

obtained using Expression (6), which involves a bias-correction factor.

Second, though it has emphasized the importance of bias correction when converting
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effect sizes in dichotomization designs, the psychometric tradition within meta-analysis has

relied on variance formulas based on bivariate normal sampling, which are inappropriate

for effect sizes from extreme groups designs, dichotomizations, and controlled experiments.

The correct large-sample variance formulas provided in this paper are markedly different

from the large-sample variance of the Pearson correlation coefficient under bivariate

normality. Under limited circumstances, a simpler formula based on the variance from a

controlled experimental design provides an adequate approximation to the variance. Based

on the simulation study, V d
ce should be used to estimate the variance of converted effect

sizes when the data come from an extreme groups design with sample cutoffs. In other

circumstances, and particularly for dichotomization designs, the actual asymptotic variance

formulas are less biased and therefore preferable, despite being more tedious to calculate.

Third, I have proposed a model relating standardized mean differences from

controlled experiments to the Pearson correlation coefficient between continuous variables.

This model leads to a formula for converting effect sizes that differs from existing proposals

(Borenstein, 2009; Hunter & Schmidt, 2004), and highlights that strong assumptions

regarding the treatment-control differential are needed for the conversion to produce

sensible results. Although correlational meta-analyses sometimes include converted

standardized mean differences from controlled experiments, doing so seems to be of

questionable value, and the converted effect sizes should be treated with skepticism. Even

in the limited circumstances when a credible treatment-control differential can be

estimated or assumed, the converted effect sizes are very sensitive to it; moreover, the

results can be badly biased if the treatment-control differential is small.

Finally, there remains controversy regarding whether correlations should be analyzed

in their natural r metric or after applying Fisher’s z-transformation. The present results do

not speak to this controversy directly, though they do address a complication that arises if

bias-corrected correlation estimates are to be analyzed after z-transformation. The

complication is created because bias-correction may lead to estimated correlations outside
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of the interval (-1,1), making direct application of z(·) impossible. Rather than truncating

the estimated correlation prior to transformation, I have proposed using a Taylor-series

approximation to z(·). Mechanically, this produces an estimate of z(ρ) even when reg falls

outside the domain of z(·); more importantly, using this approximation produces a

less-biased estimate than using a truncation approach. The simulation study used a

Taylor-series approximation with five terms, but this choice is arbitrary; future work will

need to provide guidance as to how many terms should be used for a given type of design

and sample size.

It is interesting to note that the meta-analytic tradition that favors z-transformation

has tended to ignore bias correction (Borenstein, 2009; Hedges & Olkin, 1985), while the

tradition that emphasizes bias correction has argued against use of the z-transformation

(Hunter & Schmidt, 2004). Of course, in psychometric meta-analysis, bias corrections arise

from many other study features besides dichotomization or use of extreme groups. Further

investigation is warranted regarding use of the Taylor-series approximate z-transformation

after these other forms of bias correction, since the method may have wider application

than that examined here. Another alternative to z-transformation would be to develop a

generalized linear model for r-type effect sizes and estimate it via quasi-likelihood (see,

e.g., McCullagh & Nelder, 1989).

As noted above, conversions among different types of effect sizes are needed for a

variety of situations. This paper has addressed only a few study designs where results are

typically reported using d-type effect sizes that one may want to convert to rs or zs.

Readers and meta-analysts will no doubt encounter other study designs not addressed here,

such as those using hierarchical linear models, a combination of dichotomization and

extreme groups, extreme groups with multi-dimensional cutoffs (e.g., Cross et al., 2002), or

dichotomization of latent traits (e.g., Séguin, Nagin, Assaad, & Tremblay, 2004). More

broadly, further work is needed to examine and clarify conversion formulas for other types

of effect sizes, such as from odds ratios to standardized mean differences and vice versa.
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The present paper demonstrates how such future work might proceed. In studying

conversions from d to r to z, I have relied on explicit and specific distributional

assumptions to derive appropriate variance estimation procedures for the converted effect

size estimates. In so doing, I have identified discrepancies between the actual large-sample

variances and certain naive approximations. These discrepancies highlight the need to

consider the sampling design and data-generating model of any particular study, rather

than only the algebraic form of the effect size statistic, in determining appropriate variance

estimation methods. Methodological texts could improve the quality of guidance regarding

effect size conversions by emphasizing more directly these connections between design,

model, and estimation method.
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Table 1

Equation numbers for conversion and variance formulas

Design d-to-r conversion Variance of r r-to-z conversion Variance of z

Bivariate sampling – (12) (9) (13)

Controlled experiment (4) (15) (9) (16)

Dichotomization (8) + (6) (18) + (19) (11) (18) + (20)

Extreme groups (5) + (6) (17) + (19) (11) (17) + (20)
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Table 2

Derivatives of z(·)

Derivative Function

1st z(1)(r) = (1− r2)−1

2nd z(2)(r) = 2r(1− r2)−2

3rd z(3)(r) = (2 + 6r2)(1− r2)−3

4th z(4)(r) = (24r + 24r3)(1− r2)−4

5th z(5)(r) = (24 + 240r2 + 120r4)(1− r2)−5
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Table 3

Simulation parameters

Design* Parameter Levels

All Correlation ρ 0.00, 0.01,...,0.95

All Total sample size n 20, 40, 80, 160

CE T-C Differential w 0.5, 1.0, 2.0

DI, EG Cutoff percentile p1
1
2 ,

1
3 ,

1
5 ,

1
8

DI, EG Cutoff basis population, sample
*CE controlled experimental design; DI dichotomization design; EG extreme groups design.



CONVERTING FROM D TO R TO Z 45

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

20
25

30
35

p1

a

p2 = p1

p2 = 1 − p1

(a) Auxiliary constant a as a function of p1

0.0 0.1 0.2 0.3 0.4 0.5

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

p1

b

p2 = p1

p2 = 1 − p1

(b) Auxiliary constant b as a function of p1

Figure 1 . Auxiliary constants a and b. The solid line corresponds to a balanced extreme

groups design with p2 = p1. The dashed line corresponds to a dichotomization design with

p2 = 1− p1.
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Figure 4 . Simulation results for the bivariate sampling design
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Figure 5 . Simulation results for the controlled experimental design
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CONVERTING FROM D TO R TO Z 51

n = 20 n = 40 n = 80 n = 160

−0.1

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
ρ

R
el

at
iv

e_
B

ia
s(

V
r )

Estimator

V.eg

V.ce

(a) Relative bias of V r
eg versus V r

ce using sample cutoffs and p1 = 1
2

n = 40 n = 80 n = 160

−0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
ρ

R
el

at
iv

e_
B

ia
s(

V
z )

Estimator

V.eg

V.ce

(b) Relative bias of V z
eg versus V z

ce using sample cutoffs and p1 = 1
2

Figure 7 . Simulation results for variance estimators from the dichotomization design



CONVERTING FROM D TO R TO Z 52

p1 = 1/3 p1 = 1/5 p1 = 1/8

−0.015

−0.010

−0.005

0.000

0.005

−0.015

−0.010

−0.005

0.000

0.005
P

op. cutoff
S

am
ple cutoff

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
ρ

B
ia

s(
r e

g)
n

20

40

80

160

(a) Bias of reg

p1 = 1/3 p1 = 1/5 p1 = 1/8

0.80

0.85

0.90

0.95

1.00

0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9
ρ

P
r(|

r e
g|

<
1)

n

20

40

80

160

(b) Pr(|reg| < 1) using sample cutoffs

p1 = 1/3 p1 = 1/5 p1 = 1/8

−0.1

0.0

0.1

0.2

0.3

−0.1

0.0

0.1

0.2

0.3

−0.1

0.0

0.1

0.2

0.3

−0.1

0.0

0.1

0.2

0.3

n =
 20

n =
 40

n =
 80

n =
 160

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
ρ

B
ia

s (
z e

g) Estimator

z.S

z.T

(c) Bias of zS
12 versus zT

5 using sample cutoffs

Figure 8 . Simulation results for effect sizes from the extreme groups design



CONVERTING FROM D TO R TO Z 53

n = 20 n = 40 n = 80 n = 160

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

P
op. cutoff

S
am

ple cutoff

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
ρ

R
el

at
iv

e_
B

ia
s(

V
r )

Estimator

V.eg

V.ce

(a) Relative bias of V r
eg versus V r

ce for p1 = 1
3

n = 40 n = 80 n = 160

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

P
op. cutoff

S
am

ple cutoff

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
ρ

R
el

at
iv

e_
B

ia
s(

V
z )

Estimator

V.eg

V.ce

(b) Relative bias of V z
eg versus V z

ce for p1 = 1
3

Figure 9 . Simulation results for variance estimators from the extreme groups design



CONVERTING FROM D TO R TO Z 54

Appendix A

Controlled experimental design

Here I derive the conversion formula for the converted correlation coefficient rce as given in

Equation (4). By the basic properties of the normal distribution, it follows that the

expected value of ȳ2 − ȳ1 is ρσyw and the expected value of s2
p is σ2

y(1− ρ2). From this, it is

clear that d converges to the value δce = wρ/
√

1− ρ2. Solving this expression for ρ yields

ρ = δce√
δ2
ce + w2

.

Substituting the sample estimate d in place of δce produces rce, an estimator of ρ.
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Appendix B

Extreme groups design

Here I derive the conversion formula for the converted correlation coefficient reg and the

large-sample variance of the d statistic from an extreme groups design. The conversion

formula is based on the limiting distribution of d, which can be derived from the first four

central moments of (Y |X < Φ−1(p1)) and (Y |X ≥ Φ−1(1− p2)). Arnold et al. (1993) give

the moment-generating function for the variable (U |α < X < β), where (U,X) are

bivariate normal with mean zero, unit variance, and correlation ρ. Setting

β = Φ−1(p1), α = −∞, this moment-generating function is

MU(t) = 1
p1

Φ(Φ−1(p1)− ρt) exp
(
t2

2

)
,

with corresponding cumulant-generating function

KU(t) = log Φ(Φ−1(p1)− ρt) + t2

2 − log p1.

The cumulants of U can be found from the derivatives of KU(t) evaluated at t = 0. Let

c = c(p) = Φ−1(p) and v = v(p) = φ(c(p))/p. The first four cumulants are then as follows:

κ1(p) = −ρv

κ2(p) = 1− ρ2v[c+ v]

κ3(p) = −ρ3v[(2v + c)(v + c)− 1]

κ4(p) = −ρ4v
[
(5v + c)(v + c)2 + (v2 − 3)(v + c)− v

]
. (21)

Since Y = µy + σyU , it follows that E[Y |X < Φ−1(p1)] = m11 = µy + σyE(U) and

that E[(Y − µy)k|X < Φ−1(p1)] = σkyE[(U − E(U))k] for k ≥ 2. The first four central

moments of (Y |X < Φ−1(p1)) are therefore

m11 = µy + σyκ1(p1) = µy − σyρv(p1),

m12 = σ2
yκ2(p1),

m13 = σ3
yκ3(p1),

m14 = σ4
y[3κ2

2(p1) + κ4(p1)]. (22)
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The central moments of (Y |X ≥ Φ−1(1− p2)) can be found through a property of

skew-normal distributions: if U ∼ SN(ρ, α, β) and V ∼ SN(−ρ,−β,−α), then U and V

follow the same distribution. Take V ∼ SN(−ρ,Φ−1(p2),∞), so that

(Y |X > Φ−1(1− p2)) = µy − σyV . Then

m21 = µy − σyκ1(p2) = µy + σyρv(p2),

m22 = σ2
yκ2(p2),

m23 = −σ3
yκ3(p2),

m24 = σ4
y[3κ2

2(p2) + κ4(p2)]. (23)

To derive the limiting distribution of d, note that Var(ȳi) = mi2/ni,

Cov(ȳi, s2
i ) = mi3/ni, and

Var(s2
i ) = (ni − 1)2

n3
i

mi4 −
(ni − 1)(ni − 3)

n3
i

m2
i2.

Therefore,

√
ni


 ȳi

s2
i

−
 mi1

mi2


 D→ N


 0

0

 ,
 mi2 mi3

mi3 mi4 −m2
i2


 , (24)

where D→ denotes convergence in distribution. Assume that ni = qin, so that

f = q1/(q1 + q2) remains fixed as n→∞. Let

d′ = ȳ2 − ȳ1√
fs2

1 + (1− f)s2
2

,

so that d′ has the same limiting distribution as d. It then follows from (24) that d

converges to the value

δeg = m21 −m11√
fm12 + (1− f)m22

= k1(p2) + k1(p1)√
fk2(p1) + (1− f)k2(p2)

= ρ(v1 + v2)√
1− ρ2[fv1(v1 + c1) + (1− f)v2(v2 − c2)]

, (25)
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where c1 = Φ−1(p1), c2 = Φ−1(1− p2), v1 = φ(c1)/p1, and v2 = φ(c2)/p2. Working in the

case that p1 = p2, Feldt (1961) derived an estimator for ρ by solving an expression similar

to (25) for ρ and then substituting the sample quantity d for the parameter δeg. Following

this approach in the more general case leads to the formula for reg given in (5) and (6).

Next, by applying the delta method to d′, it follows from (24) that (d− δeg)/
√
Vd

converges in distribution to the standard normal, where n = n1 + n2 and

nVd = m12/f +m22/(1− f)
fm12 + (1− f)m22

− (m21 −m11)(m23 −m13)
[fm12 + (1− f)m22]2

+ (m21 −m11)2[fm14 + (1− f)m24]
4[fm12 + (1− f)m22]3

− (m21 −m11)2[fm2
12 + (1− f)m2

22]
4[fm12 + (1− f)m22]3 . (26)

Substituting (22), (23), and (25) into (26) produces

nVd = κ2(p1)/f + κ2(p2)/(1− f)
fκ2(p1) + (1− f)κ2(p2)

− [κ1(p1) + κ1(p2)][κ3(p1) + κ3(p2)]
[fκ2(p1) + (1− f)κ2(p2)]2

+ [κ1(p1) + κ1(p2)]2[fκ2
2(p1) + (1− f)κ2

2(p2)]
2[fκ2(p1) + (1− f)κ2(p2)]3

+ [κ1(p1) + κ1(p2)]2[fκ4(p1) + (1− f)κ4(p2)]
4[fκ2(p1) + (1− f)κ2(p2)]3 , (27)

in which the only unknown parameter is ρ. Thus, Vd may be estimated by evaluating the

cumulants in (21) using ρ = reg, then calculating Vd using (27).
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