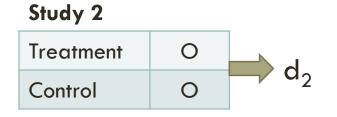
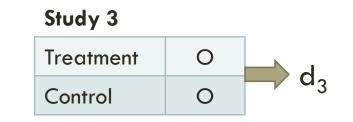
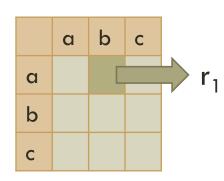

META-ANALYSIS OF DEPENDENT EFFECT SIZES: A REVIEW AND CONSOLIDATION OF METHODS

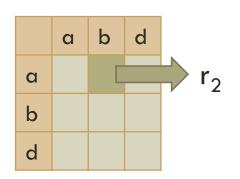

James E. Pustejovsky, UT Austin Beth Tipton, Columbia University Ariel Aloe, University of Iowa


AERA NYC April 15, 2018 <u>pusto@austin.utexas.edu</u>

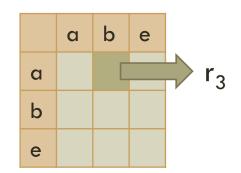
BASIC META-ANALYSIS METHODS ASSUME INDEPENDENT EFFECT SIZES

In a meta-analysis of experiments:

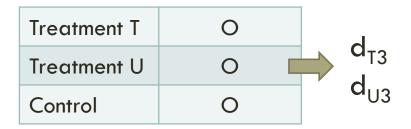




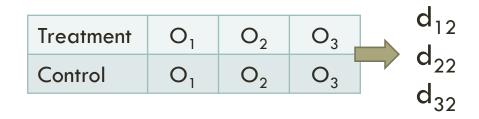
In a meta-analysis of correlations:



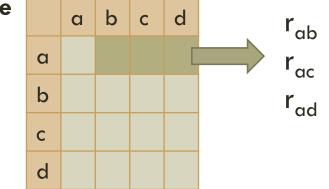
Study 3



BUT DEPENDENT EFFECT SIZES ARE VERY COMMON IN PRACTICE


Multiple outcomes measured on common set of participants

Multiple treatment conditions compared to a common control



Outcome measured at multiple follow-up times

Multiple correlations from a

common sample

FRIESE, FRANKENBACH, JOB, & LOSCHELDER (2017). DOES SELF-CONTROL TRAINING IMPROVE SELF-CONTROL: A META-ANALYSIS.

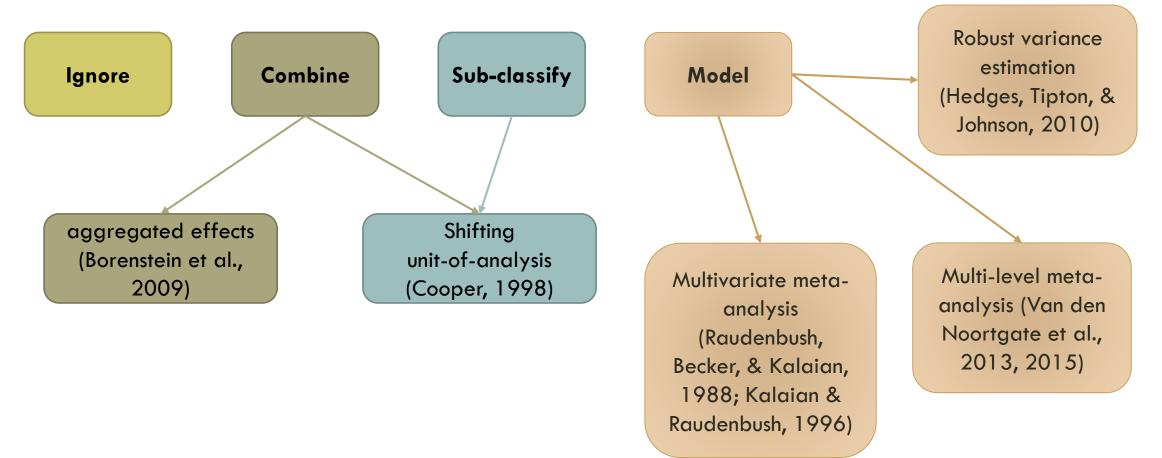
33 experimental studies, 166 effect size estimates (standardized mean differences)

- \checkmark Multiple outcomes (1-13 outcomes per study, median = 2)
- ✓ Multiple follow-up times (immediate post-test and/or later follow-up)
- ✓ Multiple treatment conditions (1-4 treatment conditions per study)
- ✓ Multiple control conditions (active and/or passive control)
- \checkmark 1-52 effect size estimates per study (median = 2)

CORRELATIONS BETWEEN ES ESTIMATES

Multiple treatments compared to common control

known formulas (Gleser & Olkin, 2009), easy enough to calculate


- Multiple outcomes/multiple follow-ups
- known formulas (Gleser & Olkin, 2009)
- require knowing correlations among outcomes/repeated measures (often not available)

- Multiple correlations from common sample
- known, icky formulas (Steiger, 1980)
- need to know correlations between ALL variables involved

Which one should I use?

METHODS FOR HANDLING DEPENDENCE

Becker (2000) described four broad strategies:

RE-ANALYSIS OF SELF-CONTROL TRAINING STUDIES

	(1)	(2)	(3)	(4)	(5)		
	Aggregated	Shifting unit-of-	Multivariate	Multi-level meta-	Robust variance		
	effects	analysis	meta-analysis	analysis	estimation		
Overall Average ES	0.281***		0.261***	0.263***	0.289***		
(k = 33, N = 166)	[0.059]		[0.052]	[0.054]	[0.060]		
Between-study SD	0.207		0.202	0.254	0.289		
Within-study SD			0.143	0.027			
Moderator analysis by type of outcome							
Stamina	0.579***	0.413***	0.359***	0.351***	0.579***		
(k = 16, N = 31)	[0.1 <i>5</i> 7]	[0.093]	[0.077]	[0.071]	[0.123]		
Strength	0.199**	0.171**	0.236***	0.238***	0.203**		
(k = 28, N = 135)	[0.071]	[0.064]	[0.054]	[0.055]	[0.065]		
Difference	-0.380*	-0.243*	-0.123	-0.112	-0.376*		
	[0.185]	[0.113]	[0.072]	[0.059]	[0.136]		

AGGREGATED EFFECTS

Average estimates to generate single "synthetic" ES per study.

 Estimating variance of synthetic ES requires correlations among component ES (Borenstein et al., 2009).

• Common to use a rough approximation assuming $r \approx 1$.

Limits moderator/meta-regression analyses to between-study predictors.

SUB-GROUPS/SHIFTING UNIT-OF-ANALYSIS

• If ES can be classified into sub-groups where each study contributes ≤ 1 ES estimate, then univariate meta-analysis can be conducted within sub-groups.

- If there are still multiple ES per sub-group, aggregate (Cooper, 1998).
- Need correlations between effects within sub-group in order to get variances of aggregated effects.
- Average effects by sub-group are not independent.
- How to make comparisons between average effects by sub-group?
- Different ES estimates for each moderator analysis.
- How to do meta-regression with multiple predictors?

MULTIVARIATE META-ANALYSIS

(Raudenbush, Becker, & Kalaian, 1988; Kalaian & Raudenbush, 1996)

Hierarchical model for component ES estimates nested within studies

$$T_{ij} = \mathbf{x}_{ij}\mathbf{\beta} + u_j + v_{ij} + e_{ij}$$

where
$$u_j \sim N(0, \tau^2)$$
, $v_{ij} \sim N(0, \omega^2)$, $e_{ij} \sim N(0, s_{ij}^2)$, $Cov(e_{hj}, e_{ij}) = r_{hij}s_{hj}s_{ij}$.

- Requires estimates/assumptions about ES correlations r_{hij} .
- In the example, I calculated r for multiple T-common C studies, assumed r = 0.17 for multiple outcomes/time-points.
- Allows for modeling of between- and within-study variation in the ES.
- Makes use of between- and within-study variation in predictors.

MULTI-LEVEL META-ANALYSIS

(Van den Noortgate, López-López, Marín-Martínez, & Sánchez-Meca, 2013, 2015)

Use multi-level model to account for dependence between ES estimates within studies, ignoring the sampling correlations:

$$T_{ij} = \mathbf{x}_{ij}\mathbf{\beta} + u_j + v_{ij} + e_{ij}$$

where
$$u_j \sim N(0, \tau^2)$$
, $v_{ij} \sim N(0, \omega^2)$, $e_{ij} \sim N(0, s_{ij}^2)$, $Cov(e_{hj}, e_{ij}) = 0$.

- Simulation evidence indicates that this approach can be "robust" to mis-specified correlation structure.
- But unclear whether robustness holds generally.

ROBUST VARIANCE ESTIMATION

(Hedges, Tipton, & Johnson, 2010)

- Meta-analysis/meta-regression using "sandwich" variance estimation methods
 - robust to mis-specified/unknown correlations between ES within studies.
- sandwich estimation methods apply to very general class of models.
- RVE implementation involves
- choosing between "correlated effects" or "hierarchical effects" working models.
- making "working" assumption about correlation between ES estimates.
- Uses semi-efficient diagonal weights:

$$w_{ij} = \frac{1}{n_j (\bar{s}_j^2 + \hat{\tau}^2)}$$
, where $\bar{s}_j^2 = \frac{1}{n_j} \sum_{i=1}^{n_j} s_{ij}^2$

n.

 Studies with more effects will get less weight in meta-regressions that have withinstudy predictors.

RE-ANALYSIS OF SELF-CONTROL TRAINING STUDIES

	(1)	(2)	(3)	(4)	(5)		
	Aggregated	Shifting unit-of-	Multivariate	Multi-level meta-	Robust variance		
	effects	analysis	meta-analysis	analysis	estimation		
Overall Average ES	0.281***		0.261***	0.263***	0.289***		
(k = 33, N = 166)	[0.059]		[0.052]	[0.054]	[0.060]		
Between-study SD	0.207		0.202	0.254	0.289		
Within-study SD			0.143	0.027			
Moderator analysis by type of outcome							
Stamina	0.579***	0.413***	0.359***	0.351***	0.579***		
(k = 16, N = 31)	[0.1 <i>5</i> 7]	[0.093]	[0.077]	[0.071]	[0.123]		
Strength	0.199**	0.171**	0.236***	0.238***	0.203**		
(k = 28, N = 135)	[0.071]	[0.064]	[0.054]	[0.055]	[0.065]		
Difference	-0.380*	-0.243*	-0.123	-0.112	-0.376*		
	[0.185]	[0.113]	[0.072]	[0.059]	[0.136]		

COMPARISON

	Aggregated effects	Shifting unit- of-analysis	Multivariate meta-analysis	Multi-level meta-analysis	Robust variance estimation
Requires making "working" assumption about correlations	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Robustness to correlation assumptions	Ś	Ś	Ś	Ś	Robust
Meta-regression specification	Limited	Limited	Flexible	Flexible	Flexible
Random effects specification	Limited	Somewhat limited	Flexible	Flexible	Limited

CONSOLIDATION

- Robust "sandwich" variance estimation can be used with *any* of the methods.
- Default RVE weights should not be used for meta-regression with predictors that vary within study.
- Multi-level meta-analysis = multi-variate meta-analysis assuming r = 0.
- More attention to within- versus between-study variation in moderators.
- Improve computational tools to make multivariate meta-analysis easier to implement.

REFERENCES

Becker, B. J. (2000). Multivariate Meta-analysis. In S. D. Brown & H. E. A. Tinsley (Eds.), Handbook of Applied Multivariate Statistics and Mathematical Modeling (pp. 499–525). San Diego, CA: Academic Press.

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons, Ltd.

Cooper, H. M. (1998). Synthesizing Research: A Guide for Literature Reviews (3rd ed.). Thousand Oaks, CA: Sage Publications, Inc.

Friese, M., Frankenbach, J., Job, V., & Loschelder, D. D. (2017). Does Self-Control Training Improve Self-Control? A Meta-Analysis. Perspectives on Psychological Science, 12(6), 1077–1099. <u>http://doi.org/10.1177/1745691617697076</u>

Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The Handbook of Research Synthesis and Meta-Analysis (2nd ed., pp. 357–376). New York, NY: Russell Sage Foundation.

Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. *Research Synthesis Methods*, 1(1), 39–65. <u>http://doi.org/10.1002/jrsm.5</u>

Kalaian, H. a., & Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. *Psychological Methods*, 1(3), 227–235. <u>http://doi.org/10.1037/1082-989X.1.3.227</u>

Raudenbush, S. W., Becker, B. J., & Kalaian, H. a. (1988). Modeling multivariate effect sizes. *Psychological Bulletin*, 103(1), 111–120. <u>http://doi.org/10.1037/0033-2909.103.1.111</u>

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. *Psychological Bulletin*, 87(2), 245–251. <u>http://doi.org/10.1037//0033-2909.87.2.245</u>

Van den Noortgate, W., López-López, J. A., Marín-Martínez, F., & Sánchez-Meca, J. (2013). Three-level meta-analysis of dependent effect sizes. Behavior Research Methods, 45(2), 576–594. <u>http://doi.org/10.3758/s13428-012-0261-6</u>

Van den Noortgate, W., López-López, J. A., Marín-Martínez, F., & Sánchez-Meca, J. (2015). Meta-analysis of multiple outcomes: a multilevel approach. Behavior Research Methods, 47(4), 1274–1294. <u>http://doi.org/10.3758/s13428-014-0527-2</u>