Some implications of behavioral observation procedures for meta-analysis of single-case research

James E. Pustejovsky Northwestern University

November 14, 2012

Defining & estimating effect sizes for single-case studies of free-operant behavior

James E. Pustejovsky Northwestern University

November 14, 2012

Dunlap, et al. (1994)

Choice making to promote adaptive behavior for students with emotional and behavioral challenges.

Single-case designs (SCDs)

- Class of research methods for evaluating effects on individuals of practices, interventions, programs
- Applications in many areas of education research and psychology
- Repeated measurements of outcome variable(s)
- Deliberate, researcher-controlled manipulation of treatment

Outline

• **Background**

on single-case research & effect sizes

• **A different approach to defining effect sizes** using a model for free-operant behavior

• **Estimation procedures**

for partial interval data

• **Discussion**

and future directions

Choice making to promote adaptive behavior for students with emotional and behavioral challenges.

Meta-analysis of single-case research

- Approach for summarizing many single-case studies
- Means for identifying evidence-based practices
- No consensus about appropriate methods

Effect sizes for single case designs

- Effect sizes
	- Basic units of analysis in a meta-analysis
	- Quantitative measures of study results (i.e., treatment effects)
	- What is the right metric for comparing results of studies that use different outcome measures?
- Many proposed effect size metrics for single-case designs (Beretvas & Chung, 2008)
	- Generic
	- Computational formulas, without reference to models

Outline

• **Background**

on single-case research & effect sizes

- **A different approach to defining effect sizes** using a model for free-operant behavior
- **Estimation procedures** for partial interval data
- **Discussion**

and future directions

Shogren, et al. (2004)

The effect of choice-making as an intervention for problem behavior

- Meta-analysis containing 13 studies (including Dunlap, et al., 1994)
- 32 unique cases

Another approach to defining effect sizes

- **Free-operant behavior:** behavior that can occur at any time, without prompting or restriction by the investigator (e.g., disruptive behavior, physical aggression, motor stereotypy, smiling, slouching).
- **Prevalence**: the proportion of time that a behavior occurs
- **The prevalence ratio**:

(Prevalence during treatment) (Prevalence during baseline) Prevalence during treatment Prevalence during baseline

- Why?
	- Prevalence is most relevant dimension of free-operant behavior.
	- Captures how single-case researchers talk about their results.
	- Empirical fit.

A model for free-operant behavior

• Session-level measurement model.

A model for free-operant behavior

Alternating Renewal Process (Rogosa & Ghandour, 1991)

- 1. Event durations are identically distributed, with average duration $\mu > 0$.
- 2. Inter-event times (IETs) are identically distributed, with average IET $\lambda > 0$.
- 3. Event durations and IETs are all mutually independent.
- 4. Process is in equilibrium.

Continuous recording

- 1. Note beginning and end time of each event.
- Find total duration of all events.
- 3. Divide by total session length: *Y* = (total duration) / *L*.

 $E(Y) = \frac{\mu}{\sigma^2}$ $\mu + \lambda$ $\overline{}$ $+\lambda$ and $-\lambda$ Continuous recording measures **prevalence.** Under ARP,

Partial interval recording

- 1. Divide session into *K* short intervals, each of length *P*.
- 2. During each interval, note whether behavior occurs at all.
- 3. Calculate proportion of intervals where behavior occurs:

Y = (# Intervals with behavior) / *K*.

Partial interval recording (cont.)

- Partial interval recording does not measure prevalence (Altmann, 1974; Kraemer, 1979).
- In an alternating renewal process,

$$
E(Y) = \frac{\mu}{\mu + \lambda} + \beta \qquad \beta = \frac{\int_0^P Pr(IET > x)dx}{\mu + \lambda} > 0
$$

The prevalence ratio, defined

- Baseline phase: μ^B , λ^B
- Treatment phase: μ^T , λ^T
- The prevalence ratio:

$$
\Omega = \frac{\mu^T / (\mu^T + \lambda^T)}{\mu^B / (\mu^B + \lambda^B)}
$$

- "No effect" corresponds to $\Omega = 1$.
- Confidence intervals, meta-analysis on natural log scale.

$$
\log \Omega = \log \left(\frac{\mu^T}{\mu^T + \lambda^T} \right) - \log \left(\frac{\mu^B}{\mu^B + \lambda^B} \right)
$$

Outline

• **Background**

on single-case research & effect sizes

- **A different approach to defining effect sizes** using a model for free-operant behavior
- **Estimation procedures** for partial interval data
- **Discussion** and future directions

Estimation

- Continuous recording (and other measurement procedures)
	- Conventional methods: generalized linear models.
- Partial interval data
	- Need to invoke additional assumptions.

Partial interval data: Bounding the bias

- Pick a value μ_{min} where you are certain that μ^B , $\mu^T > \mu_{min}$.
- Then, under ARP,

$$
\Omega^L \leq \Omega \leq \Omega^U
$$

where

$$
\Omega^{L} \equiv \frac{E(Y^{T})}{E(Y^{B})} \times \left(\frac{\mu_{min}}{\mu_{min} + P}\right) \quad \Omega^{U} \equiv \frac{E(Y^{T})}{E(Y^{B})} \times \left(\frac{\mu_{min} + P}{\mu_{min}}\right)
$$

Y ^B outcome in baseline phase *Y^T* outcome in treatment phase

Partial interval data: Bounding the bias (cont.)

• Estimate the bounds with sample means.

$$
\hat{\Omega}^{L} \equiv \frac{\overline{y}_{T}}{\overline{y}_{B}} \times \left(\frac{\mu_{min}}{\mu_{min} + P}\right) \qquad \hat{\Omega}^{U} \equiv \frac{\overline{y}_{T}}{\overline{y}_{B}} \times \left(\frac{\mu_{min} + P}{\mu_{min}}\right)
$$

sample mean in baseline phase, $\qquad \qquad \overline{\mathcal{Y}}_T^{}$ sample mean in treatment phase

• With approximate variance (on log-scale)

$$
y_B
$$
 sample mean in baseline phase,
\n y_T sample mean in treatment phase
\n
$$
y_T
$$
 sample mean in treatment phase
\n
$$
Var(\log \hat{\Omega}^L) = Var(\log \hat{\Omega}^U) \approx \frac{s_T^2}{n_T(\bar{y}_T)^2} + \frac{s_B^2}{n_B(\bar{y}_B)^2}
$$

 $\frac{2}{5}$ sample variance in baseline phase, $\sigma_{\rm r}^2$ sample variance in treatment phase n_B observations in baseline phase, n_T observations in treatment phase $\bm{S}_{\bm{B}}$ 2 $s_{\scriptscriptstyle T}$

 \int

Dunlap, et al. (1994)

Choice making to promote adaptive behavior for students with emotional and behavioral challenges.

Partial interval data: Other strategies

What assumptions are necessary to get point estimates?

- 1. Distributional assumption about IETs, plus no change in mean duration.
- 2. Distributional assumptions about IETs and event durations.

Conclusion

- Limit scope to a specific class of outcomes.
- Use a model to
	- Separate operational definitions from estimation procedures.
	- Address comparability of different outcome measurement procedures.
- Emphasize assumptions justifying estimation procedures.

Future directions

- Other effect size proposals in light of free-operant model
- Improved measurement procedures?
	- Combining momentary time sampling & interval recording
- Design comparability
	- Hedges, Pustejovsky, & Shadish (2012) on standardized mean differences

pusto@u.northwestern.edu

Special thanks to my colleagues

- Larry Hedges
- Will Shadish
- Kristynn Sullivan
- Jonathan Boyajian

Extras

- [Notation](#page-28-0)
- Other effect sizes
	- [In the literature](#page-29-0)
	- [For free-operant behavior](#page-31-0)
- [Outcome classes in single-case research](#page-32-0)
- [Measurement procedures for free-operant behavior](#page-34-0)
- [Shogren meta-analysis results](#page-38-0)
- Estimation
	- [Continuous recording](#page-40-0)
	- Partial interval recording [\(Strategy 2](#page-44-0), [Strategy 3,](#page-47-0) [Strategy 4](#page-48-0))
- • [Generalized linear models](#page-49-0)

Dunlap, et al. (1994)

Choice making to promote adaptive behavior for students with emotional and behavioral challenges.

Notation & definitions

- *L* = length of observation session
- *μ* = average event duration
	- \cdot μ^B during baseline phase
	- \cdot μ^T during treatment phase
- λ = average inter-event time
	- \cdot λ^B during baseline phase
	- \cdot λ^T during treatment phase
- *Ω* = Prevalence ratio

$$
\Omega = \frac{\mu^T / (\mu^T + \lambda^T)}{\mu^B / (\mu^B + \lambda^B)}
$$

$$
\beta = \frac{\int_0^P \Pr(IET > x) dx}{\mu + \lambda}
$$

• β = Bias of partial interval data where *P* is the interval length*.*

• Standardized Mean Difference (Busk & Serlin, 1992)

$$
SMD \equiv \frac{\overline{y}_T - \overline{y}_B}{S_{pool}} \qquad s_{pool}^2 = \frac{(n_B - 1)s_B^2 + (n_T - 1)s_T^2}{n_B + n_T - 2}
$$

• Mean Baseline Reduction (Campbell & Herzinger, 2010)

$$
MBR \equiv \frac{\overline{y}_T - \overline{y}_B}{\overline{y}_B} \times 100\%
$$

• Non-overlap of All Pairs (Parker & Vannest, 2009)

$$
NAP \equiv \sum_{b:Trt_b=0}\sum_{t:Trt_t=1}\frac{I(Y_t < Y_b)}{n_T n_B}
$$

Standardized mean difference

• Alternating Poisson Process with prevalence ratio = 0.5, $μ^B = 20$ s, $λ^B = 20$ s, $μ^T = 20$ s, $λ^T = 60$ s.

Possible effect sizes for free-operant behavior

Outcomes in single-case research

N = 122 single-case studies published in 2008, as identified by Shadish & Sullivan (2011).

- **Restricted-operant** behavior occurs in response to a specific stimulus, often controlled by the investigator.
- • **Free-operant** behavior can occur at any time, without prompting or restriction by the investigator (e.g., physical aggression, motor stereotypy, smiling, slouching).

Free-operant behavior

- Physical aggression
- Nail biting
- Smiling
- Tics
- Motor stereotypy
- Initiating social interaction
- Maintaining proper posture

Measurement procedures for free-operant behavior

N = 68 single-case studies measuring free-operant behavior, a subset of all 122 studies published in 2008, as identified by Shadish & Sullivan (2011). Characteristics of single-case designs used to assess intervention effects in 2008. *Behavior Research Methods*, *43*(4), 971–80.

Event counting

- 1. Count the number of events that occur during the session.
- 2. Divide by session length to get rate of events per unit time: $Y = (# events) / L$.

Momentary time sampling

- 1. Divide session into *K* short intervals.
- 2. At end of each interval, note whether behavior is occurring *at that moment*.
- 3. Calculate proportion of moments where behavior occurs: Y = (# moments with behavior) / *K*.

1. Cox, D. R. (1962). *Renewal Theory*, p. 86.

Observation recording procedures for free-operant behavior

Shogren (2004) meta-analysis

The effect of choice-making as an intervention for problem behavior.

The most misleading assumptions are the ones you don't even know you're making. - Douglas Adams, Last Chance to See

Shogren, et al. (2004)

Prevalence Ratio

Session-level model for one case, continuous recording data **logisom-level model for one case,**
 ontinuous recording data
 he data:
 n sessions, *n^p* in baseline and *n^T* in treatment phase(s)
 Y_i outcome measurement for *jth* session
 Trt_i covariate indicatin

- **The data:**
- *n* sessions, n^B in baseline and n^T in treatment phase(s)
- *Y^j* outcome measurement for *j th* session
- *Trt^j* covariate indicating if session is in a treatment phase

The case-level model:

• Constant prevalence within each phase.

$$
\omega = \log E(Y_j \mid Trt_j = 1) - \log E(Y_j \mid Trt_j = 0)
$$

Effect size estimation: Continuous recording $\begin{array}{lll} \text{In} & \text{Bstrass} & & & 42 \ \text{IS recording} & & & & \ \text{IS recording} & & & \ \text{In} & \text{In} & \text{In} & \text{In} \ \text{In} & \text{In} & \text{In} & \text{In} & \text{In} \ \text{In} & \text{In} & \text{In} & \text{$

• A basic moment estimator:

$$
\hat{\omega} = \log\left(\,\overline{y}_T\,\right) - \log\left(\,\overline{y}_B\,\right)
$$

$$
\overline{y}_B = \frac{1}{n^B} \sum_{j=1}^{n^B} Y_j \left(1 - Trt_j \right) \qquad \qquad \overline{y}_T = \frac{1}{n^T} \sum_{j=n^B+1}^{n^B+n^T} Y_j
$$

$$
\begin{array}{ll}\n\text{bin} & \text{Discussion} & \text{Extras} \\
\text{bin} & \text{EVAL}_{\text{S}} \\
\hline\n\overline{y}_B\n\end{array}
$$
\n
$$
\overline{y}_T = \frac{1}{n^T} \sum_{j=n^B+1}^{n^B+n^T} Y_j \text{Tr} t_j
$$
\n
$$
s_T^2 = \frac{1}{n^T} \sum_{j=n^B+1}^{n^B+n^T} \text{Tr} t_j \left(Y_j - \overline{y}_T \right)^2
$$

• Its approximate variance:

$$
Var\left(\hat{\omega}\right) \approx \frac{s_T^2}{n_T \left(\overline{y}_T\right)^2} + \frac{s_B^2}{n_B \left(\overline{y}_B\right)^2}
$$

$$
s_B^2 = \frac{1}{n^B - 1} \sum_{j=1}^{n^B} (1 - Trt_j)(Y_j - \overline{y}_B)^2 \qquad s_T^2 = \frac{1}{n^T - 1} \sum_{j=n^B+1}^{n^B+n^T} Trt_j (Y_j - \overline{y}_T)^2
$$

Effect size estimation: Continuous recording

• A bias-corrected estimator:

$$
\hat{\omega}_2 = \ln\left(\overline{y}_T\right) + \frac{s_T^2}{2n_T\left(\overline{y}_T\right)^2} - \ln\left(\overline{y}_B\right) - \frac{s_B^2}{2n_B\left(\overline{y}_B\right)^2}
$$

Romaniuk, et al. (2002)

The influence of activity choice on problem behaviors maintained by escape versus attention.

"Students who displayed attentionmaintained problem behavior did not show any effects as a result of the 0.03 0.09 0.25 0.71 2.00
Problem Behavior Prevalence Ratio
"Students who displa
maintained problem
not show any effects
choice intervention."

Effect size estimation: Partial interval data

Strategy 2: Point estimate

Assumptions:

- 1. IETs are exponentially distributed.
- 2. Average duration is constant across phases: $\mu^B = \mu^T$.
- 3. Assume that $\mu^B = \mu^T = \mu^*$, for some known μ^* *.*

Effect size estimation: Partial interval data

Strategy 2: Point estimate (cont.)

• Find estimates for λ^B and λ^T by solving

$$
\overline{y}_B = 1 - \hat{\lambda}^B e^{-P/\hat{\lambda}^B} / (\mu^* + \hat{\lambda}^B) \qquad \overline{y}_T = 1 - \hat{\lambda}^T e^{-P/\hat{\lambda}^T} / (\mu^* + \hat{\lambda}^T)
$$

• Estimate Ω with

$$
\hat{\Omega} = \frac{\mu^* / (\mu^* + \hat{\lambda}^T)}{\mu^* / (\mu^* + \hat{\lambda}^B)}
$$

$$
Var\left(\log \Omega\right) \approx \sum_{p=B,T} \frac{\left(\hat{\lambda}^p\right)^4 s_p^2}{\left(1-\overline{y}_p\right)^2 \left[\mu^* \hat{\lambda}^p + P\left(\mu^* + \hat{\lambda}^p\right)\right]^2}
$$

Dunlap, et al. (1994) again

Choice making to promote adaptive behavior for students with emotional and behavioral challenges.

Effect size estimation: Partial interval data

Strategy 3: Parametric bound

- Assume that IETs are exponentially distributed.
- Assume that $\mu^B = \mu^T$.
- If $E(Y^T) < E(Y^B)$ then $\omega^L \leq \omega \leq \omega^U$

$$
\text{Background}\quad \text{Definition: Partial interval data}\n\text{ffect size estimation: Partial interval data}\n\text{rategy 3: Parametric bound}\n\text{Assume that IETs are exponentially distributed.}\n\text{Assume that } \mu^B = \mu^T.\n\text{f } E(Y^T) < E(Y^B) \text{ then } \omega^L \leq \omega \leq \omega^U\n\omega^L = \ln \left[-\ln E \left(1 - Y^B \right) \right] - \ln \left[-\ln E \left(1 - Y^T \right) \right]\n\omega^U = \ln \left[E \left(Y^T \right) \right] - \ln \left[E \left(Y^B \right) \right]\n\text{isfinite the bounds with sample means.}\n\hat{\omega}^L = \ln \left[-\ln \left(1 - \overline{y}_B \right) \right] - \ln \left[-\ln \left(1 - \overline{y}_T \right) \right]\n\hat{\omega}^U = \ln \left(\overline{y}_T \right) - \ln \left(\overline{y}_B \right)\n\end{math}
$$

• Estimate the bounds with sample means.

$$
\hat{\omega}^{L} = \ln \left[-\ln \left(1 - \overline{y}_{B} \right) \right] - \ln \left[-\ln \left(1 - \overline{y}_{T} \right) \right]
$$

$$
\hat{\omega}^{U} = \ln \left(\overline{y}_{T} \right) - \ln \left(\overline{y}_{B} \right)
$$

Effect size estimation: Partial interval data

Strategy 4: Moment estimation

- Assume that IETs are exponentially distributed.
- Assume that event durations are exponentially distributed.
- Estimate *μ, λ* in each phase by setting sample mean & variance equal to moment functions:

$$
\overline{y}^T = E(Y^T) = f(\mu^T, \lambda^T)
$$

$$
s_T^2 = Var(Y^T) = g(\mu^T, \lambda^T)
$$

- • Disadvantages:
	- Assumes no extra session-to-session variability
	- Need to know number of intervals
	- Large sampling variability

Generalized linear models

- Relationship between mean and linear regression?
	- log link function

$$
\ln E(Y_j) = \beta_0 + \beta_1 Tr t_j
$$

- logit link for prevalence odds ratio
- • Relationship between mean and variance?

Relationship between mean and variance?

• Under APP, with momentary time sampling, the relationship between the mean and the variance depends on the behavior's incidence.

Variance functions

$$
\phi = \frac{\mu}{\mu + \lambda}, \quad I = \frac{1}{\mu + \lambda}
$$

"Ballpark" variance function

- Relationship between mean and variance?
	- "Ballpark" variance function
	- Sandwich variance estimation (heteroscedasticity robust)

Adding serial dependence

• Regression with serial dependence between sessions:

$$
\ln E(Y_j \mid \epsilon_j) = \beta_0^* + \beta_1 Tr t_j + \epsilon_j
$$

where $(\epsilon_{1}, \epsilon_{2},..., \epsilon_{n})$ follow an auto-regressive model

- Dealing with serial dependence
	- Ignore it, use empirical variance estimates for meta-analysis
	- Estimate it to improve precision of point estimates