
Measurement-comparable effect sizes for single-case
studies of free-operant behavior: Simulation results

James E. Pustejovsky

January 29, 2014

This appendix presents the results of a simulation study examining the finite-sample
performance of the effect size estimators proposed in the main text. The following estimators
are studied:

• simple and bias-corrected moment estimators for the log-incidence ratio using event
counting data;

• simple and bias-corrected moment estimators for the log-prevalence ratio using contin-
uous recording data or momentary time sampling data;

• simple and bias-corrected moment estimators for the log-prevalence odds ratio using
continuous recording data or momentary time sampling data; and

• a moment estimator for the log-prevalence odds ratio using partial interval recording
data.

For each of these estimators, I compare the bias and root mean-squared error (RMSE) of
the bias-corrected moment estimator and the simple moment estimator. I then examine
the relative bias of the variance estimators corresponding to each of the proposed point-
estimators.1 Finally, I assess the empirical coverage rates of approximate 95% confidence
intervals (CIs) based on each of the estimators. I interpret CIs with approximately nominal
coverage rates as indirect evidence that the sampling distribution of the point estimator is
approximately normal.

1 Simulation design

I study the properties of each effect size estimator under a common data-generating model,
which follows the assumptions of the stable-phase model between sessions and the equilibrium
alternating renewal process within each session. I make several assumptions to simplify the
design of the simulation and moderate its dimensionality. First, I fix the length of each
observation session at 600 s. For the momentary time sampling and partial interval recording

1For an effect size estimator R and corresponding variance estimator VR, the relative bias of the variance
estimator is defined as E(VR)/Var(R).
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methods, I assume that each interval lasts 20 s. Both of these assumptions are within the
range of times observed in practice.2 Next, I assume that each phase contained an equal
number of observation sessions, so that n0 = n1 = n. Finally, I assume that the average event
duration remains unchanged between phases, so that µ0 = µ1; this assumption implies that
the log-prevalence ratio is equivalent to the log-incidence ratio and that the log-prevalence
odds ratio is equivalent to the log-interim ratio.

Using these assumptions, the simulation varies the within-phase sample size, baseline
prevalence, baseline incidence, and prevalence odds ratio, all over wide ranges. The within-
phase sample size ranges from n = 4 to n = 20 in steps of 4. The baseline prevalence
ranges from φ0 = 0.1 to φ0 = 0.9 in steps of 0.1, covering the bulk of the parameter space
for this dimension. The baseline incidence ranges from ζ0 = 1

100
(a moderate frequency

event) to ζ0 = 1
10

(a high frequency event), within intermediate values of 1
90
, 1
80
, 1
70

, etc.
The prevalence odds ratio ranges from exp(ψ) = 0.5 (i.e., a decrease in prevalence-odds
of 50%) to exp(ψ) = 1.5 (an increase of 50%), in steps of 0.25. Given that µ0 = µ1, the
log-prevalence and log-incidence ratios can be determined from the the baseline prevalence
and log-prevalence odd ratio as ωφ = ωζ = − log [φ+ (1 − φ) exp(ψ)].

To complete the simulation specification, I select two different parametric forms for the
event duration and interim time distributions, both of which are used to generate behavior
streams from the alternating renewal process (ARP). In one condition, I use exponential
distributions for both event duration and interim time. In the other condition, I use gamma
distributions with shape parameters fixed to 3. Both of these choices are arbitrary, but
use of more empirically grounded assumptions will not possible until fine-grained continuous
recording data on free-operant behavior become available. For each combination of sam-
ple sizes, parameter values, and ARP distributions, the distributions of the estimators are
simulated over 5,000 replications. R code for reproducing the simulations is available upon
request.

2 Log-response ratio estimators

This section presents the results for the log-incidence ratio estimator based on event counting
data and the log-prevalence ratio estimators based on continuous recording or momentary
time sampling data. Because I have set µ0 = µ1, estimators based on all three types of data
share a common estimand, which I refer to as the log-response ratio.

Figure 1 presents results for the bias and RMSE of the estimators. For each type of data,
the simple (plug-in) moment estimator is compared to the bias-corrected estimator. It can
be seen in Figure 1a that the bias-corrected estimators have very small biases, even for very
small n. In comparison, the simple estimators have a wider range of biases, particularly
when n = 4. In addition, it can be seen in Figure 1b that, given the type of data, form of
the ARP distribution, and sample size, the estimators display a comparable range of RMSE
values. (In fact, the similarity of RMSE holds even for individual levels of φ0, ζ0, and ψ.)
Given that the bias-corrected estimators have comparable RMSE and reduced bias, they are
therefore recommended for use in meta-analysis.

2Though 600 s may be shorter than average, longer observation lengths will tend to improve the perfor-
mance of all estimators.
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Event Counting Continuous Recording Momentary Time Sampling
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Figure 1: Bias and RMSE of simple- and bias-corrected log-response ratio estimators for
varying within-phase sample sizes. Each boxplot displays the range across varying levels of
φ0, ζ0, and ψ. Columns of the lattice correspond to data from different observation proce-
dures. Rows of the lattice correspond to different parametric forms for the event duration
and interim time distributions.
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Event Counting Continuous Recording Momentary Time Sampling
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(a) Relative bias of variance estimators.
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(b) 95% CI coverage rate.

Figure 2: Relative bias of variance estimators and CI coverage for log-response ratio. Each
boxplot displays the range across varying levels of φ0, ζ0, and ψ.
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Figure 2a displays the relative bias of the variance estimators corresponding to the bias-
corrected log-response ratio estimators. Across data types and ARP distributions, the vari-
ance estimators are close to unbiased, having expectations that are largely within 5% of the
true variance when n ≥ 8. At the smallest within-phase sample size (n = 4), the variance
estimators tend to slightly overstate the actual variance.

Figure 2b displays the range of actual coverage rates of 95% CIs for the log-response
ratio. The CIs have less than nominal coverage, as might be expected given the use of
standard normal critical values. At the smallest sample size considered, the coverage rates
are sometimes lower than 90%. For n ≥ 8, the coverage is at least 92% across all combinations
of parameter values; the median coverage rate is 93% for n = 8 and 94% for n = 12. A
simple small-sample correction (such as using critical values based on a t2n−2 distribution
rather than a standard normal distribution) would be expected to improve the coverage rates
of the proposed CIs.

3 Log-prevalence odds ratio estimators based on con-

tinuous recording or momentary time sampling

This section presents the results for the log-prevalence odds ratio estimators based on con-
tinuous recording or momentary time sampling data. Figure 3 displays the bias and RMSE
of the estimators, and is constructed in the same fashion as Figure 1. Just as with the
log-response ratio estimators, the bias-corrected log-prevalence odds ratio estimators have
less bias than the simple moment estimators, while maintaining comparable RMSE. Even
at the smallest sample size considered, the bias is less than 0.02 in absolute magnitude for
both continuous recording and momentary time sampling data. By comparison, the simple
moment estimator has maximum bias of 0.05 when based on continuous recording with n = 4
and 0.07 when based on momentary time sampling with n = 4.

Figure 4a displays the relative bias of the variance estimators corresponding to the bias-
corrected log-prevalence odds ratio estimators. Across data types and ARP distributions,
the variance estimators have small biases. For sample sizes of n ≥ 8, the relative bias is
always within 10% of the true variance, and is usually much closer. For small sample sizes,
the estimators tend to slightly overstate the variance, particularly when based on momentary
time sampling data.

Figure 4b displays the range of actual coverage rates of 95% CIs for the log-prevalence
odds ratio. Justs with the log-response ratio, these CIs have less than nominal coverage for
most combinations of parameters. At the smallest sample size considered, the coverage rates
are sometimes lower than 90%, but improve to near-nominal levels as sample size increases.
For n ≥ 8, the coverage is at least 92% across all combinations of parameter values.
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Continuous Recording Momentary Time Sampling

−0.075

−0.050

−0.025

0.000

0.025

−0.075

−0.050

−0.025

0.000

0.025
E

xponential
G

am
m

a(3)

4 8 12 16 20 4 8 12 16 20
Within−phase sample size (n)

B
ia

s

estimator

simple

bias−corrected

(a) Bias

Continuous Recording Momentary Time Sampling

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

E
xponential

G
am

m
a(3)

4 8 12 16 20 4 8 12 16 20
Within−phase sample size (n)

R
M

S
E estimator

simple

bias−corrected

(b) RMSE

Figure 3: Bias and RMSE of simple- and bias-corrected log-prevalence odds ratio estimators
based on continuous recording or momentary time sampling data, for varying within-phase
sample sizes.
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(a) Relative bias of variance estimators.
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(b) 95% CI coverage rate.

Figure 4: Relative bias of variance estimators and CI coverage for the log-prevalence odds
ratio, when based on continuous recording or momentary time sampling data.
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Figure 5: Bias and RMSE of log-prevalence odds ratio estimators based on partial interval
recording data, for varying within-phase sample sizes.

4 Log-prevalence odds ratio estimator based on partial

interval recording

This section presents the results for the log-prevalence odds ratio estimator based on partial
interval recording data. The proposed estimator is premised on two assumptions: that the
average event duration does not change across treatment conditions (µ0 = µ1) and that
the interim times follow exponential distributions. The first assumption holds given the
simulation design; the latter assumption does not.

Partial interval recording data is upwardly biased relative to the prevalence of a behavior.
At high levels of prevalence or incidence, it therefore displays ceiling effects that limit its
sensitivity to change. To address this feature, I limit the simulation parameter combinations
such that the expectation of the sample mean is less than 0.98 under each treatment condi-
tion. This reduces the number of unique parameter combinations of φ0, ζ0, and ψ from 450
to 345.

Figure 5 displays the bias and RMSE of the proposed moment estimator when the ARP
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(a) Relative bias of variance estimator.

0.88

0.90

0.92

0.94

0.96

4 8 12 16 20
Within−phase sample size (n)

C
ov

er
ag

e 
ra

te

(b) 95% CI coverage rate.

Figure 6: Relative bias of variance estimator and CI coverage for the log-prevalence odds
ratio, when based on partial interval recording data.

uses exponential distributions or gamma distributions. When the interim time distribution is
exponential, the estimator has only small biases. Even at the smallest sample size considered,
the bias is less than 0.04 in absolute magnitude; for n ≥ 8, the absolute bias is always less
than 0.02. However, the estimator can be badly biased if the interim time distributions
are not exponential, as in the lower panel of Figure 5a. Although the estimator actually
displays lower RMSE when the interim times are gamma-distributed than when they are
exponentially distributed, this is merely an artifact of the simulation design.

Figure 6a displays the relative bias of the variance estimator based on partial interval
recording data, under the condition that interim times are exponentially distributed. The
variance estimator tends to somewhat understate the true variance of the effect size estimator,
particularly when the within-phase sample size is very small. For n ≥ 12, the variance
estimator has bias of less than 10%.

Figure 6b displays the range of actual coverage rates of 95% CIs for the log-prevalence
odds ratio. The coverage rates are very similar to those of CIs based on other types of
data. They are generally less than nominal, but improve to near-nominal levels as sample
size increases. For n ≥ 8, the coverage is at least 92% across all combinations of parameter
values under consideration.
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