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Abstract

Available methods for meta-analysis of findings from single-case designs include one-stage

methods involving modeling of raw data from across multiple studies and two-stage

methods involving calculation of effect sizes and subsequent meta-analysis. The two-stage

approach works well for some effect size measures, such as log response ratios, but performs

inadequately for the non-overlap of all pairs index. NAP is an effect size in the family of

non-overlap measures, which quantify effect magnitude in terms of pairwise rank

comparisons of outcomes under different treatment conditions, and is thus a useful metric

for outcomes that are not normally distributed and not on a ratio metric. We examine two

alternative approaches to meta-analysis of NAP, based on either transforming the effect

size estimates or on a binomial generalized linear mixed model. We demonstrate the

approaches by re-analyzing data from a meta-analysis of SCEDs examining augmentative

and alternative communication interventions and evaluate the performance of the

approaches using an extensive simulation study. We find that neither approach performs

adequately for synthesis of single-case data series with limited numbers of observations in

the baseline and intervention phases.

Keywords: single-case design; non-overlap measure; meta-analysis; generalized linear

mixed model
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Synthesis of non-overlap of all pairs using logistic transformation or binomial

generalized linear mixed models

Meta-Analysis of Single-Case Designs

Methods for meta-analysis of single-case experimental designs (SCEDs) are needed

due to the prevalence of empirical research using SCEDs within special education, school

psychology, speech and hearing sciences, and other fields. Available meta-analytic

approaches include one-stage methods involving modeling of raw data from across multiple

studies (Moeyaert et al., 2014; Van den Noortgate & Onghena, 2008) and two-stage

methods involving calculation of effect sizes and subsequent meta-analysis (Pustejovsky &

Ferron, 2017). The former, raw-data synthesis approach is appropriate when all studies to

be synthesized either use the same outcome measure or use outcome measures that can be

re-scaled to a common metric. The latter, two-stage approach is appropriate when the

studies to be synthesized use a variety of outcome measures, but where an effect size can be

estimated for each case within each study. Effect size estimates are then synthesized using

a multi-level meta-analytic model that captures variation within and between studies.

A previous simulation study found that the two-stage approach performed well for

some effect size measures but not for others (Chen & Pustejovsky, 2021). In particular, a

multi-level meta-analysis model with robust variance estimation worked well for

log-response ratio effect sizes (Pustejovsky, 2018, 2015) but not for within-case

standardized mean differences (Gingerich, 1984) or non-overlap of all pairs (NAP, Parker &

Vannest, 2009) effect size measures. Thus, there is an outstanding need for meta-analytic

methods that account for the specific properties of the effect size measure.

NAP is an effect size in the family of non-overlap measures, which quantify effect

magnitude in terms of pairwise rank comparisons of outcomes under different treatment

conditions. Because it is based on rank (ordinal) comparisons, NAP is a useful metric for

outcomes that are not normally distributed and not on a ratio metric. The scale of NAP
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ranges from 0 to 1, with a value of 0.5 corresponding to no effect. The limited range of

NAP, along with the strong association between its magnitude and sampling variance,

presents challenges for multi-level meta-analysis with normally distributed random effects.

In this study, we study two alternative approaches to meta-analysis of NAP, based

on either transforming the effect size estimates or on a binomial generalized linear mixed

model. The approach based on transformation of effect sizes is conventional for other effect

size measures, but may suffer from problems when the effect size estimates are based on

small samples of data. Ryu & Agresti (2008) proposed an approach for combining and

comparing NAP values using a binomial generalized linear model with logistic link. We

extend their approach to account for the hierarchical structure of NAP effect size estimates

by including random effects for each study and for each case. Effect size estimates are

modeled as approximately binomially distributed, conditional on the effect size parameter,

with a weight function approximated by the variance estimator proposed by Hanley &

McNeil (1982). We demonstrate both approaches by re-analyzing data from a

meta-analysis of SCEDs examining augmentative and alternative communication

interventions for participants with autism spectrum disorders (Ganz et al., 2021). We then

evaluate the performance of the approaches using an extensive simulation study, which

focuses on the bias and accuracy of the overall average intervention effect estimator and

the variance component estimators at each level of the model.

The Sampling Distribution of NAP

Non-overlap of all pairs is one of a number of non-overlap indices that have have

been proposed for describing effect size magnitude in the context of single-case research

designs (Parker et al., 2014). Like other non-overlap indices, NAP is defined in terms of

ordinal comparisons between pairs of outcomes in different conditions. For comparing a

baseline condition to an intervention condition, it is the proportion of all possible pairs of

observations from the two phases where the outcome from the intervention constitutes a
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therapeutic improvement over the outcome in baseline (Parker & Vannest, 2009). Parker &

Vannest (2009) argued that NAP has better properties than other non-overlap measures

because it uses all possible pairs of outcomes, and is therefore more stable and less

influenced by outliers than other indices.

Under the assumption that outcomes within a given condition have constant means

and standard deviations, NAP is an estimator of a stable parameter measuring the overlap

between the distribution of outcomes in the treatment phase, Y B, and the distribution of

outcomes in the baseline phase, Y A. The definition of the parameter depends on whether

therapeutic benefit corresponds to an increase or decrease in the outcome. For an outcome

where increase is beneficial, the NAP parameter is

θ = Pr
(
Y B > Y A

)
+ 1

2 Pr
(
Y B = Y A

)
, (1)

whereas for an outcome where decrease is desirable,

θ = Pr
(
Y B < Y A

)
+ 1

2 Pr
(
Y B = Y A

)
(2)

(Pustejovsky, 2019).

Let nA and nB denote the number of observations in the baseline and intervention

phases, respectively. Let yA
s denote the sth value of the outcome in the baseline condition,

for s = 1, ..., nA, and let yB
t denote the tth value of the outcome in the intervention

condition, for t = 1, ..., nB. The sample estimator of NAP can be defined based on a set of

overlap indicator variables, denoted as qst for s = 1, ..., nA and t = 1, ..., nB, where qst = 1 if

yB
t is an improvement over yA

s , qst = 1
2 if yB

t = yA
s , and qst = 0 if yB

t is a worse outcome

than yA
s . The NAP estimator is then

θ̂ = 1
nAnB

nA∑
s=1

nB∑
t=1

qst (3)
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(Parker & Vannest, 2009; Pustejovsky, 2019). Indices equivalent to NAP have long been

used in other areas of application, such as clinical medicine (Acion et al., 2006; Vargha &

Delaney, 2000), and methodological research from these areas provides some results that

are relevant to NAP.

Just as a binomial random variable is a sum of binary variables with a constant

probability of success, the NAP estimator is a mean of identically distributed—but

correlated—indicator variables, q11, ..., qnAnB
. The sampling variance of the NAP estimator

is

Var
(
θ̂
)

= θ(1 − θ)
nAnB

[1 + (nB − 1)ρ1 + (nA − 1)ρ2] , (4)

where

ρ1 = Cov(qst, qs′t)
θ(1 − θ) , and ρ2 = Cov(qst, qst′)

θ(1 − θ)

for s ̸= s′ and t ̸= t′ (Mee, 1990). Because the indicator variables are not mutually

independent and ρ1 ≥ 0, ρ2 ≥ 0, the sampling variance of NAP will generally exceed the

variance of a binomial distribution.

Sen (1967; see also Mee, 1990) derived an unbiased estimator of the sampling

variance of NAP, which can be calculated as

V Sen = 1
(nA − 1)(nB − 1)

[
θ̂(1 − θ̂) + nBQ1 + nAQ2 − 2Q3

]
, (5)

where

Q1 = 1
nAn2

B

nA∑
s=1

[
nB∑
t=1

(
qst − θ̂

)]2

Q2 = 1
n2

AnB

nB∑
t=1

[
nA∑
s=1

(
qst − θ̂

)]2

Q3 = 1
nAnB

nA∑
s=1

nB∑
t=1

(
qst − θ̂

)2
.

This variance estimator has the property that it is equal to zero if θ̂ is equal to zero or one

(i.e., when there is no overlap between observations from different conditions). A strictly
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positive variance estimator can be calculated by replacing θ̂ with the quantity

θ̃ =



1
2nAnB

if θ̂ = 0

θ̂ if 0 < θ̂ < 1

2nAnB−1
2nAnB

if θ̂ = 1

in Equation (5). Hanley & McNeil (1982) proposed a slightly simpler variance estimator,

given by

V HM = 1
nAnB

[
θ̃(1 − θ̃) + (nB − 1)Q1 + (nA − 1)Q2

]
, (6)

where we have again used θ̃ in place of θ̂ so that V HM is strictly greater than zero. Note

that V HM is always smaller than V Sen.

Meta-analysis of NAP

The NAP parameter is bounded between zero and one (inclusive), and the

distribution of the NAP estimator θ̂ is far from Gaussian and can be quite skewed,

particularly when θ is near the extreme. Furthermore, single-case data typically follow a

hierarchical structure, where we have a summary effect size for each case, with several cases

nested within each study. All of these features pose challenges for meta-analysis of NAP. A

potential solution is to consider meta-analysis of a transformation of the NAP parameter,

such as positing a model involving a logistic transformation, which puts the effect size

parameter on an unconstrained scale. We also use a hierarchical meta-analysis model to

account for the potential dependence arising from cases nested within studies.

Let θjk denote the NAP parameter for case j from study k, where j = 1, ..., Jk and

k = 1, ..., K. We consider meta-analytic models of the form

logit(θjk) = µ + uk + vjk, (7)
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where µ is the overall average effect size (on the logistic scale) across cases and studies,

uk ∼ N(0, τ 2) is a study-level random effect and vjk ∼ N(0, ω2) is a case-level random

effect. This model describes the distribution of true effect size parameters across cases and

studies. To complete the model, we need to make further assumptions describing how the

distribution of effect size estimates relates to the case-specific parameters. We consider two

approaches to doing so, one based on transforming the NAP estimates and one based on a

generalized linear mixed model.

Transforming the NAP estimator

In other realms of research synthesis, it is common to conduct meta-analysis after

making a transformation of effect size estimates, such as using Fisher’s z-transformation of

the Pearson correlation coefficient. One could apply the same approach here by taking the

logistic transformation of the NAP estimator. However, this transformation is undefined at

the extremes of the scale, and so we use the truncated version of NAP so that the

transformed effect size estimator remains well-defined. Thus, we can meta-analyze

logit(θ̃jk). Following the usual delta method, the variance of this estimator is approximately

Var
(
logit(θ̃)

)
≈ 1

θ2(1 − θ)2 × Var(θ̂),

which we estimate by substituting θ̃ for θ and V HM or V Sen for Var(θ̂). The full

meta-analysis model is then

logit(θ̃jk) = µ + uk + vjk + ejk, (8)

where we assume that ejk has mean zero and variance Vjk/
[
θ̃2

jk(1 − θ̃jk)2
]
, which is treated

as a known quantity.

We would expect this approach to work reasonably well if each NAP estimate is

based on a comparison of phases with a large number of observations. However, single-case
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designs often include a very limited number of observations in each phase. As a result, the

transformed effect size estimator might have a non-trivial bias and the delta-method

variance approximation might be inadequate. Furthermore, it might not be reasonable to

treat the sampling variances as known quantities. We assess the extent of these problems

in the simulation study.

Generalized linear mixed model

Mee (1990) considered approximating the sampling distribution of the NAP

estimator as

nAnB θ̂
·∼ Binom(θ, Ñ), (9)

where Ñ is the ratio of θ(1 − θ) to an estimate of the variance of the NAP estimator. Using

the Hanley & McNeil (1982) variance estimator, this gives

ÑHM = nAnB

1 + (nB − 1) Q1
θ̃(1−θ̃) + (nA − 1) Q2

θ̃(1−θ̃)

.

This quantity can be interpreted as the “effective” number of trials for the NAP estimator,

that is, the number of trials needed for a binomial distribution to have variance equal to

the variance of NAP.

Now, let nAjk, nBjk, ÑHM
jk , and θ̂jk denote the sample sizes, effective number of

trials, and unbiased NAP estimator for case j from study k, for j = 1, ..., Jk and

k = 1, ..., K. A binomial generalized linear mixed model for NAP can be described in two

parts. First, at the measurement level, we assume

nAjknBjkθ̂jk ∼ Binom
(
θjk, ÑHM

jk

)
. (10)

Second, we assume that the NAP parameters follow a multi-level model with random

effects at the case level and study level, all on the logistic scale, as given in Equation (7).
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Combining Equations (10) and (7) yields a binomial generalized linear mixed model with

logistic link function. We estimate the model using approximate maximum likelihood via

Laplace approximation, as implemented in the glmmTMB package (Brooks et al., 2017).

The generalized linear mixed model formulation uses a binomial likelihood to

describe the distribution of θ̂ conditional on the true parameter. This has the advantages

of capturing the skew of the sampling distribution and allowing us to avoid truncation of

the estimator at the extremes of the distribution. However, this approach also bears the

potential limitation that the effective number of trials is treated as known, when in fact it

must be estimated for each case. In practice, the effective number of trials is estimated

based on a small sample of data for each case, which might create problems for this

approach to synthesis. Thus, we need to investigate its performance using Monte Carlo

simulation.

Prediction intervals

Prediction intervals are a useful technique for characterizing the degree of

heterogeneity in meta-analysis results (Borenstein et al., 2017; Brannick et al., 2021). A

B × 100% prediction interval is an interval estimate that is expected to contain a new

effect size with probability B, or equivalently, that is expected to contain B × 100% of the

overall distribution of effect sizes, on average. In multi-level meta-analysis of single-case

designs, we can distinguish between study-level prediction intervals and case-level

prediction intervals.

The study-level prediction interval is constructed with respect to the distribution of

study-level average effect sizes, so that it will contain a new study-level average effect size

with probability B. We calculate an approximate B × 100% study-level prediction interval

as

µ̂ ± zB/2 ×
√

SE2
µ̂ + τ̂ 2, (11)

where µ̂ is the estimate of the overall average effect size (on the logistic scale), SEµ̂ is its
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standard error, τ̂ is the estimated between-study standard deviation, and zB/2 is the upper

B/2 critical value from a standard normal distribution.

The case-level prediction interval is constructed with respect to the distribution of

cases, so that it will contain the effect size for a new case from a new study with

probability B. We calculate an approximate B × 100% case-level prediction interval as

µ̂ ± zB/2 ×
√

SE2
µ̂ + τ̂ 2 + ω̂2, (12)

where ω̂ is the estimated within-study standard deviation.

One advantageous feature of prediction intervals is that they can be reported either

on the logistic scale (i.e., the scale on which the meta-analysis model is defined) or on the

original NAP scale. The intervals defined above are on the logistic scale. To put the

interval on the original scale, we apply the inverse of the logistic transformation to the

end-points of the interval.

Meta-analysis of augmentative and alternative communication interventions

Ganz et al. (2021) reported a synthesis of single-case design studies examining the

effects of augmentative and alternative communication (AAC) interventions for school-age

individuals with autism spectrum disorders (ASD) or intellectual disabilities. The analysis

by Ganz and colleagues used two different effect size metrics, Tau (a linear transformation

of NAP) and the log response ratio, and synthesized findings using multi-level

meta-analytic models. For the analysis of Tau effect sizes, the meta-analytic model was

specified on the original scale despite a very non-normal distribution of effect size

estimates, and robust variance estimation methods were used for inference. Here, we

re-analyze the data using the two approaches described in the previous section.

Ganz et al. (2021) identified over 100 single-case design studies meeting inclusion

criteria, including over 300 unique participants. For illustrative purposes, we limited our
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Figure 1
Density of NAP estimates (top panel, purple) and logit(NAP) estimates (bottom panel, red)
from AAC intervention studies. Each point corresponds to one NAP estimate, with point
size inversely proportional to the log of its sampling variance.

re-analysis to participants with ASD and outcome measures directly related to AAC. With

these additional criteria, the sample included data for 172 distinct participants from 65

studies. Included studies used several different designs, including multiple baseline across

participants, treatment reversal, and alternating treatment designs. For treatment reversal

designs, we calculated NAP effect sizes for each pair of adjacent baseline and treatment

phases (i.e., each consecutive AB pair) and treat the resulting effect size estimates as

independent replicates of the same parameter. For alternating treatment designs involving

multiple interventions or comparison conditions, we calculated NAP effect sizes comparing

conditions with AAC interventions to baseline conditions. The data include a total of 366

effect size estimates.

Figure 1 displays the distribution of NAP effect size estimates, with the original

(0,1) scale depicted in the top panel and the logistic scale depicted in the bottom panel.
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The size of each point is inversely proportional to the log of the effect size’s sampling

variance, such that larger points correspond to more precise estimates. In the top panel, it

can be seen that the distribution of NAP estimates is strongly left-skewed and the

truncation of effect sizes near the ceiling of 1 is evident.

Table 1
Multi-level meta-analysis estimates for augmentative and alternative communication
intervention studies

Logistic-transformation Binomial GLMM
Parameter Est 95% CI Est 95% CI
mu 2.213 [1.858, 2.569] 2.945 [2.394, 3.496]
NAP 0.901 [0.865, 0.929] 0.950 [0.916, 0.971]
tau 1.305 [1.039, 1.641] 1.051 [0.834, 1.324]
omega 0.590 [0.413, 0.790] 2.032 [1.590, 2.596]

Table 1 reports parameter value estimates for the multi-level meta-analysis model

using both the logistic transformation approach and the binomial GLMM approach. With

the former approach, the average effect size estimate of µ̂ = 2.213 corresponds to a value of

0.901 on the original NAP scale. The binomial GLMM approach leads to a larger average

effect size estimate of µ̂ = 2.945, corresponding to a value of 0.950 on the original NAP

scale. The estimated study-level standard deviation is smaller when based on the binomial

GLMM than when based on the logistic transformation. Notably, the estimated case-level

standard deviation is substantially larger when based on the binomial GLMM versus when

based on the logistic transformation. Figure 2 depicts the distibutions of effect size

parameters implied by each estimation approach, along with the empirical distributions of

effect size estimates.

The parameter estimates from these two approaches imply substantively different

prediction intervals. With the logistic transformation approach, an 80% study-level

prediction interval is given by [0.525, 3.901] ([0.628, 0.980] on the NAP scale) and an 80%

case-level prediction is [0.364, 4.063] ([0.590, 0.983] on the NAP scale). In contrast, with
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Figure 2
Density of NAP estimates (top panel, purple) and logit(NAP) estimates (bottom panel, red)
from AAC intervention studies. Orange curves represent the model-based density estimates
based on the logistic transformation approach. Green curves represent the model-based density
estimates based on the binomial GLMM approach. The red curve in the top panel represents
the model-based density estimate based on a multi-level meta-analysis of the raw NAP esti-
mates.

the binomial GLMM approach, the study-level prediction interval is [0.316, 5.574] ([0.578,

0.996] on the NAP scale) and the case-level prediction interval is [-0.009, 5.899] ([0.498,

0.997] on the NAP scale). The wider range of the prediction intervals from the binomial

GLMM implies greater uncertainty about the effect sizes that would be expected when

using an AAC intervention in a new study.

A multi-level meta-analysis of the raw NAP estimates would seem to be clearly

inappropriate given the strongly skewed, non-normal distribution of effect size estimates.

For purposes of comparison, we nonetheless computed prediction intervals based on such a

model, truncating the intervals at the limits of the NAP scale. The resulting estimates are

depicted as a red curve in the top panel of Figure 2. The 80% study-level prediction
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interval is [0.685, 1.000] and the 80% case-level prediction is [0.672, 1.000]. These intervals

differ in both their center and width compared to the prediction intervals obtained from

the logistic transformation and binomial GLMM approaches.

The example presented here is based on real data where no ground truth is known.

Further, it is difficult to say on the basis of theory which of the two estimation approaches

we have used provides more accurate results—or whether either of the approach provides

estimates of the distribution of effects that adequately represent uncertainty. To investigate

the performance characteristics of the approaches, we turned to Monte Carlo simulations.

Monte Carlo Simulations

Data-generating process

We simulated meta-analytic data using an approach similar to that used in Chen &

Pustejovsky (2021), following a strategy of generating raw data from a collection of

multiple single-case design studies, then calculating a NAP effect size estimate for each

case within each study. We generated data for K = 10, 20, or 30 primary studies. Study k

included Jk cases, where Jk was drawn from a uniform distribution on the integers 1,. . . ,5.

We generated true effect sizes for each case in each study according to Equation (7), with

values of the overall average effect size that correspond to NAPs ranging from 0.05 to 0.95

in steps of 0.10; values of τ equal to 0.0, 0.1, 0.2, or 0.3; and values of ω equal to 0.00, 0.05,

0.10, or 0.15.

In order to generate raw data, we also had to specify a model for the distribution of

outcomes in the baseline phase for each case, as well as models for the number of

observations in the baseline and intervention phases. We assumed that outcomes were

either normally (Gaussian) distributed with unit variance or Poisson distributed. In each

case, we simulated the baseline mean level of the outcome from a Gamma distribution with

shape 2 and scale 7, truncated to have a minimum value of 5, and we assumed that the

mean level was the same for all cases within a given study. Letting αk denote the mean
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baseline level for cases in study k,

αk ∼ max {5, Γ(2, 7)} .

We truncated this distribution in order to avoid range restrictions for the NAP parameters.

We simulated the number of observations in the baseline and intervention phases from

shifted Poisson distributions, as

nA ∼ 3 + Poisson(4), nB ∼ 3 + Poisson(4).

Given a true effect size for case j in study k and a baseline mean level for study k, the

mean level of the outcome in the intervention phase can be determined using the properties

of the normal or Poisson distribution (Chen & Pustejovsky, 2021). We then simulated nAjk

raw data points with the specified baseline mean level and nBjk raw data points with the

specified intervention mean level, then calculated a NAP estimate and sampling variance

according to equations (3) and (4), respectively.

Estimation methods

For each simulated meta-analytic dataset, we applied the logistic transformation

approach and the binomial GLMM approach. With the logistic transformation approach,

we estimated the meta-analytic model by restricted maximum likelihood using the metafor

package (Viechtbauer, 2010). We estimated the binomial GLMM by restricted maximum

likelihood using the glmmTMB package (Brooks et al., 2017) with default settings. Note

that, for each approach, estimation involves use of numerical maximization routines that

do not always converge.

Performance criteria

For each combination of parameter values, we generated 1000 meta-analytic

datasets. We tracked convergence rates and calculated performance criteria for each model
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based on the subset of replications where the estimation process converged. We assessed

the performance of the approaches in terms of the parameter bias of µ̂, τ̂ 2, and ω̂2, the

coverage rate and width of 95% confidence intervals for µ, and the expected content of 80%

prediction intervals.

We calculated the expected content of prediction intervals based on the true

data-generating process. Let
[
lr
study, ur

study

]
and [lr

case, ur
case] denote the lower and upper

bounds of the study-level and case-level prediction intervals, respectively, calculated in

replication r = 1, ..., 1000. The content of the rth study-level prediction interval is

Cr
study = Φ

(
ur

study − µ

τ

)
− Φ

(
lr
study − µ

τ

)
,

where Φ() is the standard normal cumulative distribution function. The content of the rth

case-level prediction interval is

Cr
case = Φ

(
ur

case − µ√
τ 2 + ω2

)
− Φ

(
lr
case − µ√
τ 2 + ω2

)
.

We estimated the expected content by taking the average of Cr
study or Cr

case across

replications of the simulation.

Results

For simplicity, we present results for Poisson-distributed outcomes in the figures of

the main text. Results for normally distributed outcomes are generally similar and will be

presented in supplementary materials. Each of the following figures consists of a grid of

panels, where columns correspond to different levels of case-level heterogeneity (ω) and

rows correspond to different levels of study-level heterogeneity (τ). Within each panel, the

horizontal axis corresponds to different values of the overall average effect size (µ) on the

logistic scale, line types correspond to different numbers of studies in the meta-analysis

(K), and colors correspond to different estimation approaches.
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Figure 3
Bias of µ̂ using the logistic transformation approach and binomial GLMM approach, for
varying values of µ, τ , ω, and K, with Poisson-distributed outcomes.

Figure 3 depicts the bias of the overall average effect size estimators (µ̂) based on

the logistic transformation (in orange) and binomial GLMM (in green) approaches. Both

estimators are systematically biased for non-null µ, with a similar pattern of bias across

different levels of within- and between-study heterogeneity. Neither estimator has

uniformly smaller bias. Rather, the logistic transformation approach has relatively small

bias for negative average effect sizes (i.e., µ < 0 or NAP < 0.5) but it is biased towards

null for positive average effect sizes, with bias that increases in magnitude for larger

average effect sizes. The binomial GLMM estimator shows the opposite pattern of bias: it
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Figure 4
Bias of τ̂ 2 using the logistic transformation approach and binomial GLMM approach, for
varying values of µ, τ , ω, and K, with Poisson-distributed outcomes.

has relatively small bias for positive average effect sizes, but it is biased away from zero for

negative average effect sizes, and the magnitude of the bias grows as µ becomes

increasingly negative.

Figure 4 depicts the bias of the between-study heterogeneity variance estimator

(τ̂ 2). Overall, the estimator based on logistic transformation tends to be less biased than

the estimator based from the binomial GLMM. For smaller values of τ , the logistic

transformation has a relatively small, positive bias over most of the parameter space,

although its bias becomes negative at the largest value of τ = 0.3. The estimator based on
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Figure 5
Bias of ω̂2 using the logistic transformation approach and binomial GLMM approach, for
varying values of µ, τ , ω, and K, with Poisson-distributed outcomes.

the binomial GLMM tends to systematically over-estimate the between-study

heterogeneity, with severe bias when the overall average effect size is negative.

Figure 5 depicts the bias of the within-study heterogeneity variance estimator (ω̂2).

The pattern of biases is generally similar to the pattern of for the between-study

heterogeneity variance estimator. The estimator based on logistic transformation is close to

unbiased except when the overall average effect size is negative. In contrast, the estimator

based on the binomial GLMM has a large positive bias except when the overall average

effect size is very large and positive. For negative average effect sizes, the binomial GLMM
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Figure 6
Coverage rates of nominal 95% confidence intervals for µ using the logistic transformation
approach and binomial GLMM approach, for varying values of µ, τ , ω, and K, with Poisson-
distributed outcomes.

estimator has a very severe, positive bias.

Figure 6 depicts the empirical coverage rates of 95% confidence intervals for µ based

on each of the estimation approaches. Neither approach provides confidence intervals with

adequate coverage levels. Because both approaches have systematically biased estimators

of µ, confidence intervals are not correctly centered. In regions of the parameter space

where the overall average effect size estimator µ̂ is more strongly bias, the corresponding

confidence intervals have coverage far below the nominal level. Further, coverage worsens
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Figure 7
Expected content of nominal 80% study-level prediction intervals using the logistic transfor-
mation approach and binomial GLMM approach, for varying values of µ, τ , ω, and K, with
Poisson-distributed outcomes.

as the number of studies increases. This occurs because bias remains stable while sampling

variance decreases as K increases.

Figures 7 and 8 depict the expected content of 80% prediction intervals for

study-level and case-level effect sizes, respectively. Neither estimation approach yields

prediction intervals with expected content near the nominal level. Generally, the pattern of

performance is similar to that of the confidence interval coverage levels: with combinations

of parameter values where the average effect size estimator µ̂ is systematically biased, the
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Figure 8
Expected content of nominal 80% case-level prediction intervals using the logistic transfor-
mation approach and binomial GLMM approach, for varying values of µ, τ , ω, and K, with
Poisson-distributed outcomes.

prediction intervals are not centered correctly and therefore have less-than-adequate

expected content. The main exception to the pattern is that the case-level prediction

intervals based on the binomial GLMM have above-nominal content over most of the

parameter space, which occurs because the binomial GLMM estimator for within-study

heterogeneity has such drastic upward bias. Overall, neither method provides prediction

intervals that are well calibrated.
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Discussion

We have investigated two methods for synthesizing NAP effect sizes, using a

meta-analysis model that describes the distribution of effect size parameters on a logistic

scale. The approaches involve different distributional approximations. The logistic

transformation approach is simple to implement and can be estimated using conventional

meta-analysis software. It relies on a delta-method variance approximation, which might

not work adequately when the number of observations used to estimate each effect size is

small, and it requires truncation of effect size estimates near 0 and 1. The binomial GLMM

approach avoids the need for truncation but requires estimating an effective number of

trials for the binomial distributional approximation. Again, when only a small number of

observations are available to estimate the effect size and its variance, the effective number

of trials may not be adequately estimated.

We designed Monte Carlo simulations to emulate realistic conditions for single-case

data, including for the number of cases per study and number of observations in baseline

and intervention phases. Under these conditions, neither the logistic transformation

approach or the binomial GLMM approach work adequately across the full parameter

space. The approaches lead to average effect size estimators with different, distinct

patterns of bias. This bias, in turn, leads to confidence intervals and prediction intervals

with inadequate coverage levels or expected content. Clearly, neither estimation method is

ready for use in practice.

Further investigation is needed to understand exactly why the approaches have such

severe biases. We suspect that it may be due either to the instability within which the

sampling variances are estimated or to correlation between the effect size estimator and its

sampling variance. Chen & Pustejovsky (2021) found that a multi-level meta-analysis of

the raw NAP effect size estimates performed inadequately due to the strong relationship

between the effect size estimator and its sampling variance. Something similar may occur
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here. In ongoing work, we are exploring how to mitigate these issues by partially pooling

the sampling variances or effective number of trials.
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