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Abstract

Data based on direct observation of behavior are used in many areas of educational and

psychological research, particularly in applied research areas such as the treatment of

behavioral disorders. A number of different methods are used to record data during

direct observation, including continuous recording, momentary time sampling (MTS),

partial interval recording (PIR), and whole interval recording (WIR). Among these

methods, PIR and WIR have long been recognized as problematic because, as typically

reported, the mean of such data measures neither the prevalence nor the incidence of the

observed behavior. Though the problems with these methods have long been recognized,

little research has examined methods of analyzing interval recording data other than

simply taking the mean. This paper proposes a Alternating Poisson Process model for

interval recording data that permits estimation of both prevalence and incidence via

maximum likelihood or penalized maximum likelihood methods. The paper also

describes a novel observation recording method that involve combinations of MTS, PIR,

and WIR and that provides considerably more efficient estimates of incidence.

Keywords: behavioral observation; interval recording; alternating Poisson process;

Markov chain
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Estimating the prevalence and incidence of a state behavior: Models for interval

recording data and a novel observation system

Measurements derived from systematic, direct observation of human behavior are

used in many areas of psychological and educational research. For example, direct

observation of student classroom behavior is a primary component of several existing

instruments for screening and diagnosis of emotional and behavioral problems (Volpe,

DiPerna, Hintze, & Shapiro, 2005); direct observation of childrens’ challenging behavior

in home settings has been employed to collect pre- and post-test measures in

randomized trials of behavioral interventions (e.g., Durand, Hieneman, Clarke, Wang, &

Rinaldi, 2012); and direct observation of infant-parent interaction patterns is employed

in studies of child development (Mann, Ten Have, Plunkett, & Meisels, 1991) and

cross-cultural differences (Bornstein, 2002). Direct observation also plays a prominent

role in single-case research, where it is used to assess individual responses to intervention

by measuring changes in behavior over time (Kazdin, 2011).

Systematic direct observation procedures require that the behavior of interest have

a clear operational definition, so that its occurrence or absence can be judged at a given

point in time. In forming such an operationally definition, is useful to distinguish

between behaviors that are events, where each occurrence is of negligible duration,

versus behaviors that are states, where individual episodes of behavior have positive

duration (J. Altmann, 1974). The primary characteristic of an event behavior is its

incidence, or frequency of occurrence per time unit. In contrast, a state behavior has

two primary characteristics: incidence, which is the frequency (per unit time) with

which new episodes of the behavior begin, and prevalence, which is the proportion of

time that the behavior occurs. Given an operationally defined behavior, measurements

of its characteristics are obtained by recording data while observing the behavior (either

in person, or by video-recording) for a specified length of time.

There are several different procedures for recording data during direct observation,
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varying in ease of implementation, the level of detail in the resulting data, and the

aspect of behavior to which the resulting measurement corresponds (for surveys of major

recording procedures, see J. Altmann, 1974; Ayres & Gast, 2010; Hartmann & Wood,

1990; Primavera, Allison, & Alfonso, 1996). The most intensive procedure is continuous

recording (sometimes called duration recording or real-time recording), in which the

observer records the time at which each behavioral episode begins and ends. Data from

continuous recording is very rich, in that it permits direct estimation of prevalence and

incidence and can also be subjected to more sophisticated forms of modeling (e.g.,

Bakeman & Quera, 2011; Haccou & Meelis, 1992). However, less effort-intensive data

collection methods are often required, particularly for use in clinical and applied

research settings.

Other commonly used systems for collecting behavioral data do not capture a

complete record of the behavior during an observation session, but rather involve making

observations only intermittently. Among intermittent recording systems, the three main

procedures are momentary time sampling, partial interval recording, and whole interval

recording. In all three methods, an observation session is divided into a fixed number of

equally spaced intervals, of perhaps 10 or 15 s in length, and a binary data-point is

recorded for each interval. The systems differ only in the rule for scoring each interval.

Using momentary time sampling (MTS), an interval is scored as a one if a behavioral

event is happening during the final moment of the interval (and is otherwise scored as a

zero). Using partial interval recording (PIR, also known as one-zero sampling, modified

frequency sampling, or Hansen sampling), an interval is scored as a one if the behavior

occurs at any point during the interval. Using whole interval recording (WIR), an

interval is scored as a one only if the behavior occurs for the entire duration of the

interval. In some PIR and WIR systems, a small length of time is left between each

interval so that the observer does not have to maintain continuous attention.

The interval-by-interval data generated by these recording systems is often
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summarized by the proportion of intervals scored as a one. Typically, only this summary

proportion is used for later analysis, where it is interpreted as a measure of prevalence.

However, whether it is reasonable to reduce the data to a summary proportion depends

on which recording system was used to collect it.

Under quite general circumstances, the proportion of MTS intervals is an unbiased

estimate of prevalence (Rogosa & Ghandour, 1991). Thus, reducing the data to the

summary proportion is entirely reasonable if the investigator’s interest is solely in the

prevalence of the behavior. The drawback of doing so is that one is left without any

measure of the behavior’s incidence. Even if not of substantive interest, an estimate of

incidence is needed in order to assess the magnitude of measurement error in the

prevalence estimate.

Brown, Solomon, and Stephens (1977, see also Griffin & Adams, 1983) described a

method for estimating both prevalence and incidence from MTS data. Their approach

was to first posit a stochastic process for the underlying pattern of behavior as perceived

by the observer, or what is often termed the behavior stream. The particular model

they considered was an Alternating Poisson Process, which is a simple, two-state

continuous time Markov chain where transitions between states follow exponential

distributions. Brown and colleagues showed that if the behavior stream is generated by

such a process, then interval-by-interval MTS scores follow a discrete-time Markov

chain, from which closed-form expressions for the maximum likelihood estimators of

prevalence and incidence can be derived.

Unlike MTS, PIR and WIR systems do not produce clearly interpretable summary

measurements. Rather, the PIR summary proportion systematically over-estimates

prevalence and the WIR summary proportion systematically under-estimates prevalence.

With either system, the extent of the bias depends on characteristics of the behavior as

well as operational features of the recording system (Kraemer, 1979; Rogosa &

Ghandour, 1991), making the construct interpretation of such data quite difficult.
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Consequently, methodologists have long argued against the use of PIR and WIR systems

(J. Altmann, 1974; Lane & Ledford, 2014; Mann et al., 1991). Despite such objections,

the systems remain in common use, particularly as part of behavioral time series designs

and single-case research (Lane & Ledford, 2014; Mudford, Taylor, & Martin, 2009; Rapp

et al., 2007).

Little previous research has considered methods of analyzing PIR and WIR data

beyond simply using the summary proportion. For PIR data, S. A. Altmann and

Wagner (1970) proposed a transformation of the summary proportion as an estimate of

incidence, motivated by a model in which behavioral episodes follow a Poisson process.

While this model applies well to event behaviors, it is not a suitable description of state

behaviors, where individual episodes have non-negligible duration. Suen and Ary (1986,

1989) have proposed a method for obtaining estimates of prevalence and incidence from

PIR data, provided that the behavior stream conforms to certain conditions. However,

their proposed procedure is not motivated by any explicit data-generating process, and

later simulation studies reported that the method produces badly biased estimates

(Rogosa & Ghandour, 1991, sec. 5.2). Pustejovsky and Swan (2014) proposed several

methods for bounding the bias of the PIR summary proportion as an estimate of

prevalence, based on various prior assumptions about the behavior stream. These

methods are useful for analysis of summarized PIR data, as would be available from a

published single-case study, but are not full models of the data-generating process.

Other methods of analysis, involving fully specified data-generating models for the

interval-by-interval scores, are therefore of interest.

This paper examines models for PIR and WIR data, from which principled

estimates of prevalence and incidence can be obtained. Following Brown et al. (1977),

we model the underlying behavior stream using an Alternating Poisson Process and then

derive a model for the interval-by-interval scores. Under this model, maximum

likelihood estimates for prevalence and incidence can be obtained using conventional
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numerical techniques (although they do not have closed-form expression). To remedy

some problems with the maximum likelihood estimators, we introduce penalized

likelihood estimators that have better operating characteristics and that can be tailored

to express prior information about the behavioral parameters. We also describe a novel

procedure for intermittent recording of a behavior that entails combining MTS and

interval recording methods and that can be used to obtain more efficient estimators of

prevalence and incidence.

Alternating Poisson Process models

The Alternating Poisson Process is a stochastic model that can be used to describe

a stream of behavior, as it is perceived in time. The model applies to state behaviors,

where the behavior is either occurring or not occurring at any given point in time and

where each episode of behavior has non-negligible duration. The stream of a state

behavior can be described in terms of two components: sequentially ordered,

non-overlapping episodes of behavior, which we will call event durations, and spans of

time in between episodes, which we will call interim times. Let {Z(t), 0 ≤ t} denote the

state of the behavior stream over the course of an observation session, where Z(t) = 1

indicates that an event is occurring at time t and Z(t) = 0 otherwise.

The Alternating Poisson Process makes several assumptions about how the

behavior stream is generated. Specifically, it is assumed that event durations and

interim times are mutually independent, random quantities, that the event durations

follow an exponential distribution with mean µ > 0, and that the interim times follow

an exponential distribution with mean λ > 0. Under the model, the prevalence of the

behavior is equal to the ratio of µ to the sum of µ and λ and the incidence of the

behavior is equal to the reciprocal of the sum of µ and λ. We will denote prevalence by

φ, where 0 < φ < 1, and incidence by ζ, where ζ > 0. Finally, it is assumed that the

process is in equilibrium, with Pr (Y (0) = 1) = φ. This assumption implies that there is

a constant marginal probability of observing an event at any given point in time.
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The Alternating Poisson Process is a special case of a continuous time Markov

chain, and thus has the Markov property that the future evolution of the behavior

depends only on the current state, but not on the past history of the behavior. More

precisely, the probability that a behavior will be occurring t seconds into the future is

independent of the state of the behavior for 0 ≤ r < s: What r stands for

in this inequal-

ity (and below

as well) is a lit-

tle bit opaque to

me. Might just be

something I need

explained to me

What r stands for

in this inequal-

ity (and below

as well) is a lit-

tle bit opaque to

me. Might just be

something I need

explained to me

Pr [Z(s+ t) = 1 |Z(s) = a, Z(r) : 0 ≤ r < s ] = Pr [Z(s+ t) = 1 |Z(s) = a ] (1)

for a = 0, 1 and s, t ≥ 0 (Kulkarni, 2010, Thm. 6.1). The assumption that the process is

in equilibrium further implies that the probability that a behavior will be occurring t

seconds into the future does not depend on the current time, i.e.,

Pr [Z(s+ t) = 1 |Z(s) = a ] = Pr [Z(t) = 1 |Z(0) = a ] . (2)

Let pa(t) denote the conditional probability that an event will be occurring t seconds

into the future, given that the behavior is currently in state a, for a = 0, 1. These

conditional probabilities can be expressed as follows:

p0(t) = Pr(Z(t) = 1|Z(0) = 0) = φ

[
1− exp

(
−tζ

φ(1− φ)

)]

p1(t) = Pr(Z(t) = 1|Z(0) = 1) = φ+ (1− φ) exp
(
−tζ

φ(1− φ)

) (3)

(Kulkarni, 2010, Eq. 6.17).

Momentary Time Sampling

Consider observing a behavior stream generated by the Alternating Poisson

Process and recording observations using momentary time sampling with K + 1

recording times, equally spaced at intervals of length c. Denote the recorded data by the

sequence of binary indicator variables X0, X1, ..., XK . The MTS interval data are a

record of the state of the behavior stream process at fixed moments in time: Xk = Z(ck)

for k = 0, ..., K.

Brown et al. (1977) demonstrated that MTS data follow a two-state, discrete-time

Markov chain process with transition probabilities Pr(Xk = 1|Xk−1 = a) = pa(c) and
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Pr(Xk = 0|Xk−1 = a) = 1− pa(c) for a = 0, 1. Therefore, sufficient statistics for the

process are given by the table counting the number of transitions with

(Xk−1 = a,Xk = b) for a, b = 0, 1 and k = 1, ..., K; let nab = ∑K
k=1 I(Xk−1 = a,Xk = b).

Conditioning on X0, the log-likelihood of MTS data is then given by

lMTS(φ, ζ) = n01 log φ+ n10 log (1− φ)

+ (n01 + n10) log
[
1− exp

(
−ζc

φ(1− φ)

)]

+ n00 log
[
1− φ+ φ exp

(
−ζc

φ(1− φ)

)]

+ n11 log
[
φ+ (1− φ) exp

(
−ζc

φ(1− φ)

)]
.

(4)

Brown et al. (1977) provided closed-form expressions for the maximum likelihood

estimators (MLEs) for φ and ζ based on this model. Let p̂0 = n01/ (n00 + n01) and

p̂1 = n11/ (n10 + n11). The MLE for ζ exists only when p̂0 < p̂1. When this condition

holds, the MLEs for φ and ζ are given by

φ̂MTS = p̂0

p̂0 + 1− p̂1
and ζ̂MTS = −p̂0 (1− p̂1) log(p̂1 − p̂0)

c (p̂0 + 1− p̂1)2 . (5)

The probability that the MLEs are undefined or fall outside of the parameter

space is not trivial, even when K is relatively large. In order for the estimates to fall

Table 1

Proportion of 2000 simulated MTS samples (K = 40) in which 0 < φ̂MTS < 1 and

0 < ζ̂MTS <∞.

ζ = 0.02 0.05 0.1 0.2 0.25 0.4 0.5

φ = 0.1 0.43 0.63 0.64 0.45 0.37 0.29 0.26

0.2 0.45 0.80 0.90 0.84 0.79 0.59 0.49

0.3 0.46 0.84 0.96 0.96 0.94 0.73 0.64

0.4 0.43 0.87 0.98 0.99 0.97 0.82 0.71

0.5 0.45 0.88 0.99 1.00 0.98 0.84 0.71
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strictly within the parameter space, both a 0-1 transition and a 1-0 transition must be

observed, so that p̂0 > 0, p̂1 < 1. Table 1 reports the proportion of 2000 simulated

samples in which 0 < φ̂MTS < 1 and 0 < ζ̂MTS <∞, with K = 40 and ζ scaled in terms

of the interval length. Values of φ > 0.5 are omitted because the behavior of the MTS

estimators is symmetric about φ = 0.5. The proportion of estimates falling within the

parameter space decreases as prevalence becomes more extreme and as incidence

becomes very infrequent or very frequent. The high proportion of samples in which the

estimate of incidence is undefined represents a drawback to the use of maximum

likelihood estimation based on MTS data.

Partial Interval Recording

Consider observing a behavior stream generated by the Alternating Poisson

Process and recording observations using partial interval recording. Suppose that one

observes K intervals, where each interval includes c seconds of active observation time

followed by d seconds of recording time. Let time tk = (k − 1)(c+ d) denote the

beginning of interval k. Let Uk indicate the PIR score from interval k, corresponding to

the time from tk to tk + c. Following the PIR system, Uk = 1 if is the behavior occurs at

any point during the active portion of interval, and Uk = 0 otherwise. In terms of the

behavior stream process,

Uk = I
[
0 <

∫ c

0
Z (tk + s) ds

]
(6)

for k = 1, ..., K, where
∫ c

0 denote the definite integral over the half-open interval [0, c).

Under the assumptions of the Alternating Poisson Process, the joint distribution of

U1, ..., UK can be derived as follows. Let ψk, k = 2, ..., K denote the probability than the

behavior is occurring at time tk = (k − 1)(c+ d), given the partial interval record up to

that time. Let ψ1 = φ, which follows from the assumption that the process is in
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equilibrium. We show in Appendix A that

ψk = Pr [Z(tk) = 1 |U1, ..., Uk−1 ]

=
ψk−1p1(c+ d) + (1− ψk−1)

[
p0(c+ d)− p0(d) exp

(
−ζc
1−φ

)]
1− (1− ψk−1) exp

(
−ζc
1−φ

)
uk−1

[p0(d)](1−uk−1) .

(7)

Note that Z(tk) = 1 implies that Uk = 1 with certainty, while

Pr (Uk = 1 |Z(tk) = 0) = 1− exp
(
−ζc

1− φ

)
.

It follows from the Markov property of the Alternating Poisson Process that

Pr (Uk = 1 |U1, ..., Uk−1 ) = ψk Pr (Uk = 1 |Y (tk) = 1)) + (1− ψk) Pr (Uk = 1 |Y (tk) = 0))

= 1− (1− ψk) exp
(
−ζc

1− φ

)
.

The joint distribution of U1, ..., UK can therefore be expressed as

Pr (U1 = u1, ..., UK = uK) = Pr (U1 = u1)
K∏
k=2

Pr (Uk = uk |U1, ..., Uk−1 )

=
K∏
k=1

[
1− (1− ψk) exp

(
−ζc

1− φ

)]uk [
(1− ψk) exp

(
−ζc

1− φ

)](1−uk)

.

The log-likelihood of φ and ζ, given observed PIR data u1, ..., uK , is

lPIR (φ, ζ) =
K∑
k=1

uk ln
[
1− (1− ψk) exp

(
−ζc

1− φ

)]
+ (1− uk)

[
ln (1− ψk)−

ζc

1− φ

]
. (8)

The MLEs, denoted by φ̂PIR and ζ̂PIR, are the values that maximize lPIR. Because the

conditional probabilities ψ1, ..., ψK are defined recursively, it is cumbersome and

computationally expensive to evaluate the score function corresponding to this

likelihood. The simulation study reported in a later section therefore uses the

Nelder-Mead algorithm (Nelder & Mead, 1965), which does not require evaluation of the

score function.

Just as with MTS data, MLEs based on PIR data do not always fall within the

parameter space. Table 2 reports the proportion of 2000 simulated samples in which the
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MLEs based on PIR data are within the parameter space, with K = 40, d = 0, and ζ

scaled in terms of the interval length. Because we use numerical maximization, the

results of the maximization routine are never precisely on the borders of the parameter

space. We therefore use boundaries of |logit φ̂PIR| < 8 and | log ζ̂PIR| < 8 to define the

edges of the parameter space. The proportion of estimates falling within the parameter

space is highest for moderate values of prevalence and incidence (0.2 ≤ φ ≤ 0.5 and

0.1 ≤ ζ ≤ 0.25), decreases as prevalence becomes more extreme, and decreases as

incidence becomes either less frequent (less than once per ten intervals) or more frequent

(more than once per four intervals). Unlike the MTS estimators, the pattern of

boundary estimates is asymmetric with respect to φ because PIR tends to reach ceiling

levels when prevalence is large.

In addition to returning estimates that are on the edges of the parameter space,

the MLEs based on PIR data have the further disadvantage of being somewhat sensitive

Table 2

Proportion of 2000 simulated PIR samples (K = 40) in which |logit(φ̂PIR)| < 8 and

|log(ζ̂PIR)| < 8.

ζ = 0.02 0.05 0.1 0.2 0.25 0.4 0.5

φ = 0.1 0.59 0.83 0.94 0.94 0.90 0.78 0.72

0.2 0.67 0.91 0.98 0.99 0.98 0.92 0.84

0.3 0.74 0.94 0.99 1.00 1.00 0.94 0.87

0.4 0.78 0.96 1.00 1.00 0.99 0.93 0.86

0.5 0.77 0.96 0.99 0.99 0.98 0.89 0.80

0.6 0.75 0.94 0.97 0.96 0.92 0.79 0.67

0.7 0.68 0.87 0.92 0.85 0.78 0.56 0.38

0.8 0.60 0.76 0.77 0.56 0.42 0.16 0.09

0.9 0.47 0.48 0.32 0.08 0.04 0.00 0.00
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to initialization values. The likelihood surface becomes very flat when the PIR scores

are near ceiling or floor levels, making it difficult to numerically identify the maximum.

The consequence is that different estimates can be returned depending on the

initialization values of the algorithm. Together with the possibility of obtaining

estimates on the edges of the parameter space, the numerical instability of the MLEs

motivates our investigation of alternative estimators that incorporate penalty functions.

Whole Interval Recording

Consider observing a behavior stream generated by the Alternating Poisson

Process and recording observations using whole interval recording. As with PIR,

suppose that one observes K intervals, where each interval includes c seconds of active

observation time followed by d seconds of recording time. Let Wk indicate the WIR

score from interval k, corresponding to the time from tk to tk + c. Following the WIR

system, Wk = 1 if is the behavior occurs for the duration of the active portion of

interval, and Wk = 0 otherwise. Formally,

Wk = I
[
c =

∫ c

0
Z (tk + s) ds

]
(9)

for k = 1, ..., K.

Using the WIR system to score a state behavior is logically equivalent to using

PIR to score the absence of the behavior. WIR data can therefore be modeled just as

PIR data, after an appropriate change of parameters. Specifically, the log-likelihood for

WIR data under the Alternating Poisson Process can be written in terms of the

log-likelihood for PIR data as

lWIR (φ, ζ|W1 = w1, ...,Wk = wk )= lPIR( 1− φ, ζ|U1 = 1− w1, ..., UK = 1− wk) . (10)

The equivalence of the two system implies that estimates of prevalence and incidence

based on WIR data can be obtained using the algorithms developed for PIR.
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Augmented interval recording

Thus far, we have considered conventional and widely used procedures for

intermittent, systematic direct observation procedures. We now describe a novel

recording procedure that can provide more accurate estimates of the behavioral

parameters. The method, which we call augmented interval recording, involves using

MTS, PIR, and WIR systems on each interval. To the best of our knowledge, this

procedures has not been previously described in the literature on systematic direct

observation of behavior.

Just as with PIR or WIR, suppose that the observation session is divided into K

intervals and that the first c seconds of the interval are devoted to observation while the

remaining d seconds are devoted to recording or resting; interval k therefore begins at

time tk = (k − 1)(c+ d).

Consider an observer who uses the combination of MTS, PIR, and WIR scoring

rules for each interval during an observation session. Doing so requires that the observer

record sufficient data so that the values of the MTS, PIR, and WIR variables

(Xk−1, Uk,Wk) can be determined for each interval. Figure 1 depicts the sequence of

questions to be answered during interval k in order to completely determine these values.

For each interval, the observer first notes the presence or absence of the behavior at time

tk and records the MTS score. If the behavior is present (Xk−1 = 1), then the partial

interval record is also determined (Uk = 1), and it only remains to determine whether

the behavior occurs for the duration of the interval (in which case Wk = 1) or ends

before time tk + c (in which case Wk = 0). Similarly, if the behavior is absent at the start

of the interval (Xk−1 = 0), then the whole interval record is also determined (Wk = 0),

and it only remains to determine whether a behavioral event begins before time tk + c

(in which case Uk = 1) or is absent for the entire interval (in which case Uk = 0).

The AIR procedure requires only marginally more effort on the part of the

observer than an interval recording method used alone. One measure of effort is the
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Event occurring 
at time tk?

Event ends 
before time 
tk + c?

Event begins 
before time 
tk + c?

Xk-1=1, 
Uk=1

Xk-1=0, 
Wk=0

Yes

No

Wk=1

Wk=0

Yes

No

Uk=1

Uk=0

Yes

No

Figure 1 . Procedure for combining MTS and interval recording

level of sustained attention required on the part of the observer. Because the sustained

attention needed for interval recording also entails the attention needed for momentary

time sampling, the additional effort is minimal in this respect. Another measure of effort

is the amount of data that must be recorded during the observation period. Because

Wk = 0 is implied when Xk−1 = 0 and Uk = 1 is implied when Xk−1 = 1, AIR requires

twice as much data as one of the single methods (rather than three times as much, as

might be supposed). Thus, for a fixed interval length, simultaneous use of all three

methods entails at most twice as much effort as interval recording alone. Furthermore,

using longer time-intervals with fewer intervals per observation period would mitigate

the effort required.

Under the assumptions of the Alternating Poisson Process, the data generated by

the AIR system can be modeled using a discrete-time Markov Chain, from which

estimates of prevalence and incidence can be obtained. The Markov property of the

Alternating Poisson Process implies that the joint distribution of the measurements can
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be written as

Pr (X0 = x0, X1 = x1, U1 = u1,W1 = w1, ..., XK = xK , UK = uK ,WK = wK)

= Pr (X0 = x0)
K∏
k=1

Pr (Xk = xk, Uk = uk,Wk = wk|Xk−1 = xk−1) . (11)

Denote the transition probabilities Pr (Xk = b, Uk = c,Wk = d|Xk−1 = a) = πa|bcd and let

ma|bcd = ∑K
k=1 I (Xk−1 = a,Xk = b, Uk = c,Wk = d) for a, b, c, d = 0, 1. Conditional on

X0, the log-likelihood of the observed AIR data is given by

lAIR (φ, ζ) =
1∑

a=0

1∑
b=0

1∑
c=0

1∑
d=0

ma|bcd log πa|bcd (12)

where

π0|000 = [1− p0(d)] exp
(
−ζc

1− φ

)

π0|010 = 1− p0(c+ d)− [1− p0(d)] exp
(
−ζc

1− φ

)

π0|100 = p0(d) exp
(
−ζc

1− φ

)

π0|110 = p0(c+ d)− p0(d) exp
(
−ζc

1− φ

)

π1|010 = 1− p1(c+ d)− [1− p1(d)] exp
(
−ζc
φ

)

π1|011 = [1− p1(d)] exp
(
−ζc
φ

)

π1|110 = p1(c+ d)− p1(d) exp
(
−ζc
φ

)

π1|111 = p1(d) exp
(
−ζc
φ

)

and the remaining transition probabilities are all equal to zero. See Appendix B for the

derivation of these quantities. As with PIR data, the MLEs φ̂AIR, ζ̂AIR are obtained by

maximizing lAIR using the Nelder-Mead algorithm.

Penalized likelihood estimators

The previous section has illustrated that maximum likelihood estimates derived

from MTS data or from interval recording data have undesirable operating
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characteristics when based on a moderate sample size of K = 40 intervals. In this

section, we consider the use of penalized likelihood estimators (PLEs) to stabilize the

behavior of the estimators and improve their performance in moderately sized samples.

PLEs are derived by maximizing the sum of the log likelihood and a penalty term that

depends on the parameters. Penalized likelihood estimation has been applied to an

array of statistical problems where maximum likelihood methods tend to break down,

such as estimation of logistic regression coefficients in small samples (Galindo-Garre,

Vermunt, & Bergsma, 2004; Gelman, Jakulin, Pittau, & Su, 2008), estimation of

correlation structure in high-dimensional multivariate regression models (Warton, 2008),

and estimation of variance components in multi-level models when the number of

highest-level units is small (Chung, Rabe-Hesketh, Dorie, Gelman, & Liu, 2013).

PLEs can be derived from a Bayesian perspective, by assigning a prior distribution

for the model parameters and taking the posterior mode (given the prior and the data)

as a point estimator (Chung et al., 2013). In this framework, the penalty function is

equivalent to the log of the prior distribution. An advantage of PLEs is that they

provide a convenient and coherent way to incorporate prior information about the

behavior into the estimation process.

In most research contexts, we expect that prior knowledge about characteristics of

the behavior will be more readily expressed in terms of the average event duration (µ)

and average interim time (λ). We therefore consider a class of priors in which µ and λ

follow independent gamma distributions, with

µ ∼ Gamma (αµ, cθµ) , λ ∼ Gamma (αλ, cθλ) ,

with hyperparameters αµ, αλ > 1 and θµ, θλ > 0. Note that the priors on µ and λ are

scaled in terms of the active interval length, so that they do not depend on the time unit

in which the parameters and interval length are measured. This class of priors has the

useful property that the implied priors on prevalence (φ) and incidence (ζ) have familiar
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distributional forms. Specifically, when θµ = θλ = θ, it follows that

φ ∼ Beta (αµ, αλ) , ζ ∼ Gamma−1
(
αµ + αλ,

1
cθ

)

and that φ is independent of ζ.

The penalty function implied by these priors depends on how they are

parameterized (i.e., based on priors for µ, λ or on priors for φ, ζ). We recommend using

the (µ, λ) parameterization because it reduces to zero when αµ = αλ = 1 and

θµ = θλ =∞, making the PLEs equivalent to the MLEs. With this parameterization,

the penalty function has the form

p (φ, ζ) = (αµ − 1) log (φ) + (αλ − 1) log (1− φ)− (αµ + αλ − 2) log (ζ)−
φ
θµ

+ 1−φ
θλ

cζ
. (13)

Given data based on recording system s ∈ {MTS, PIR,WIR,AIR}, the PLEs φ̃s, ζ̃s

are defined as the values that maximize ls (φ, ζ) + p (φ, ζ).

Application of penalized likelihood estimators requires the analyst to choose values

for the hyperparameters of the prior distribution. If one does not have specific prior

knowledge regarding the characteristics of the behavior stream, it is prudent to choose

hyperparameters that have little influence on the values of the PLEs. These weak priors

imply a penalty function that is relatively flat, so that PLEs will correspond closely with

the MLEs except when the data contain little information about the parameters. We

suggest that αµ = αλ = 1.5 and θµ = θλ = 10 are reasonable default choices for

hyperparameters. The priors are highest at µ = λ = 5c, or an average event duration

and an average interim time of 5 intervals; the inter-quartile ranges are from 6.1c to

20.5c. The implied prior for prevalence is symmetric about φ = 0.5; its use amounts to

adding the information from observing one independent moment where the probability

of observing behavior is 0.5. We examine the empirical performance of the PLEs with

these default hyperparameters in the next section.

In some research contexts, one may have fairly strong prior knowledge about

certain behavioral characteristics, which can be used to inform the choice of
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hyperparameters. For example, prior experience with a class of behavior may suggest

that it is implausible that the average event duration is more than two intervals in

length, and that the most likely value for the average event duration is 1
2 an interval

length. This suggests choosing αµ = 3 and θµ = 1
4 , so that the prior mode of µ is

(αµ − 1) cθµ = c
2 and Pr(µ > 2c) < 0.02. Absent strong prior information about λ, one

might use the default hyperparameters suggested above, taking αλ = 1.5, θλ = 10.

Finite-sample performance

We noted in a previous section that maximum likelihood estimators derived from

MTS or PIR data are not always well-defined, even when the number of intervals is

moderate. To remedy this problem, we have proposed the use of penalized likelihood

estimators that are always well-defined and numerically stable. These approaches to

estimation should produce equivalent results when based on very long observation

sessions with many intervals of data, but they may differ when the number of intervals is

more limited.

Both maximum likelihood and penalized likelihood estimation represent

alternatives to the standard method of summarizing intermittent behavioral observation

data, which is to use the summary proportion of intervals with behavior. For MTS data,

the summary proportion is an unbiased estimate of prevalence under a very broad class

of data-generating models (Rogosa & Ghandour, 1991); however, the summary

proportion may be less efficient than the PLE or MLE for prevalence under the

Alternating Poisson Process model. For PIR data, the summary proportion is biased as

an estimate of prevalence (Rogosa & Ghandour, 1991), while likelihood-based methods

provide approximately unbiased estimates for sufficiently long observation sessions. Still,

for a fixed sample size, the variability of the likelihood-based estimates may be worse

than the bias in the summary proportion. It is therefore important to compare the

accuracy of all of these estimators.

In order to understand the operating characteristics of the MLEs and PLEs in
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Table 3

Simulation design

Parameter Definition Levels Min. Step Max.

s Recording system 3 MTS, PIR, AIR

K Session length 15 10 10 150

φ Prevalence 19 0.05 0.05 0.95

ζ Incidence 10 0.05 0.05 0.50

samples with a finite number of intervals, we conducted a computer simulation study.

The simulations examined three specific questions:

1. For a given recording procedure (MTS or PIR), how does the accuracy of the

PLEs compare to the accuracy of the MLEs (for both prevalence and incidence)

and the accuracy of the summary proportion (for prevalence only)?

2. For a given recording procedure, how large a sample is needed to obtain

approximately unbiased estimates of prevalence or incidence using penalized

likelihood methods?

3. How does the accuracy of estimates based on the novel AIR procedure compare to

that of estimates based on MTS or PIR data?

Table 3 summarizes the simulation design. We simulated data based on three

different recording systems: MTS, PIR, and AIR; WIR was omitted because it is

equivalent to using PIR for the absence of the behavior. We varied the length of the

observation session from 10 to 150 intervals. This range spans a variety of situations in

which intermittent behavioral observation recording might be used, from a quick

observation in a classroom where the observer needs to capture the behaviors of several

children to an intensive observation of a single child over the course of an entire class
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period. For MTS and PIR, we used c = 1, d = 0, so that the number of intervals equals

the session length K. To provide for a fair comparison with the conventional recording

systems, we simulated AIR data using K/2 intervals of length c = 2 (i.e., twice as long

as those for MTS or PIR). We varied the true prevalence of the behavior stream across

nearly its entire possible range. Because c = 1 for MTS and PIR, incidence is scaled in

terms of the length of an interval; for example, ζ = 0.1 corresponds to an incidence of

one new behavioral episode per ten intervals. We varied incidence between ζ = .05 (one

new behavior per 20 intervals) and ζ = .50 (one new behavior every 2 intervals) because

this represents a range of behaviors where intermittent recording procedures might

feasibly be applied; in particular, PIR measurements would quickly approach ceiling

levels when behaviors occur more frequently than once per two intervals.

We implemented the simulations using the ARPobservation package (Pustejovsky,

2014) for the R statistical computing environment (R Core Team, 2014). For each

combination of parameter values (φ, ζ,K) and recording system, we generated 10000

behavior streams of length K from an Alternating Poisson Process, then simulated data

based on the specified recording system. For each string of simulated data, we

calculated the summary proportion of intervals and then found the MLEs and PLEs

using numerical maximization. For the PLEs, we used default priors of αµ = αλ = 1.5

and θµ = θλ = 10.

Depending on the research context, an analyst might want to use estimates in the

the natural parameterization of φ and ζ or in the transformed parameterization of

logit(φ) and log(ζ), where logit(x) = log(x)− log(1− x). The latter parameterization

puts the scores on a scale from −∞ to ∞, and so might be preferred by an analyst

seeking to fit a linear model. Consequently, we studied each research question using

both parameterizations. To address the first research question, we examined the root

mean-squared error (RMSE) of the prevalence estimates and the relatively RMSE of the

incidence estimates; we focused on relative RMSE, defined as E
[(
ζ̂ − ζ

)2
]
/ζ, because
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incidence is a rate. In the transformed parameterization, we examined the RMSE of

logit(φ) and log(ζ).

To address the second research question, regarding required minimum sample sizes

to obtain approximately unbiased estimates, we used rather liberal criteria for bias. We

believe that doing so is appropriate given the lack of alternative methods, particularly

for estimating incidence. Our criteria for “approximate unbiasedness” are defined as

follows. For prevalence, we used absolute bias in φ̂ of less than 0.03 and absolute bias in

logit(φ̂) of less than 0.05. For incidence, we used absolute relative bias in ζ̂ of less than

0.10 and absolute bias in log(ζ̂) of less than 0.10. While the criteria for incidence may

seem especially liberal, in practical terms, estimators that have 10% bias could still be

informative, particularly in contexts where interest is in large differences or large

changes in behavior.

Results: MTS

Figure 2 illustrates the distribution of RMSE of the MLEs, PLEs, and summary

proportions based on MTS data, for varying levels of K; each row of graphs corresponds

to a different parameter. Given that the MTS proportions are known to be unbiased

estimates of prevalence, those estimates provide a point of reference for the accuracy of

the MLEs and PLEs. Across all levels of K, the MLEs of φ have comparable RMSEs to

the MTS proportions. However, the MLEs perform notably worse in terms of logit(φ)

until K = 120 or more, which is a fairly large number of intervals. Across the range of

K, the PLEs of φ and logit(φ) have RMSE comparable to or smaller than the MTS

proportions. In terms of both ζ and log(ζ), the MLEs perform considerably worse than

the PLEs across all levels of K. However, the PLEs for ζ still have rather large relative

RMSE (and similarly, the PLEs for log(ζ) have large RMSE) for some parts of the

parameter space.

Figure 3 illustrates the minimum value of K required to obtain PLEs with low

bias. In terms of φ and logit(φ), the estimator requires at most 40 intervals when the
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Figure 2 . Distribution of root mean-squared error of MLE, PLE, and summary

proportion (Prop.) estimates based on MTS data, across range of 0.05 ≤ φ ≤ 0.95 and

0.05 ≤ ζ ≤ 0.50. Values above 1.5 are not displayed. For ζ, the root mean-squared error

is relative to the true value.

behavior is not too infrequent (i.e., ζ ≥ 0.1c). Even when ζ drops to 0.05c, low-bias

estimates of logit(φ) can be obtained when K ≥ 60. In terms of ζ and log(ζ), low-bias

estimates can be obtained when K is at least 80 so long as the behavior has moderate

prevalence (0.30 ≤ φ ≤ 0.70) and incidence that is neither infrequent nor very frequent

(0.10 ≤ ζ ≤ 0.45). Larger samples are required to obtain good incidence estimates when

the behavior has more extreme prevalence and high incidence, or when the behavior has

very low incidence.

Results: PIR
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Figure 3 . Minimum number of MTS intervals required to obtain PLEs with absolute

bias less than given criteria.

Figure 4 illustrates the distribution of RMSE of the MLEs, PLEs, and summary

proportions based on PIR data, across varying levels of K and for each

parameterization. In contrast to MTS, the PIR summary proportion performs quite

poorly as an estimate of prevalence. For prevalence, the PLE performs notably better

than both the MLE and the summary proportions across the entire range of K, in terms

of both the natural parameterization and the transformed parameterization. For

incidence, the PLEs once again provide more accurate estimates than the MLEs, in both

parameterizations. However, the RMSE (and relative RMSE) of the PLEs is still

relatively large in certain parts of the parameter space.
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Figure 4 . Distribution of root mean-squared error of MLE, PLE, and summary

proportion (Prop.) estimates based on PIR data, across range of 0.05 ≤ φ ≤ 0.95 and

0.05 ≤ ζ ≤ 0.50. Values above 1.5 are not displayed. For zeta, the root mean-squared

error is relative to the true value.

Figure 5 illustrates the minimum value of K required for the PLEs based on PIR

data to have low bias. Estimates of prevalence require a moderate number of intervals

(K ≥ 70) and estimates of the natural parameterization of incidence require a large

number of intervals (K ≥100) to obtain low-bias estimates, even in a restricted part of

the parameter space. Approximately unbiased estimates can be found when prevalence

is known to be relatively low (0.15 ≤ φ ≤ 0.30) and incidence is moderate (ζ ≤ 0.30c), or

when prevalence is moderate (0.15 ≤ φ ≤ 0.60) and incidence is low (ζ ≤ 0.15c).

Low-bias estimates for the natural parameterization of ζ can still be obtained slightly

outside these bounds, and approximately unbiased estimates for the natural
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parameterization of φ slightly farther still. Low-bias estimates for log(ζ) can only be

found when the number of intervals is high(K ≥ 100), prevalence is low or moderate

(.10 ≤ φ ≤ 0.70) and incidence is low (ζ ≤ 0.10c).

While these ranges are restrictive, returning to Figure 4 makes clear that the PLE

are superior to the only alternative method in use. These estimators works reasonably

well in three of the four parameterizations, and no other method can offer even a biased

estimate of log incidence. In general, PIR is only appropriate for observing behaviors

with moderate to low prevalence and moderate to low incidence. A researcher who only

uses PIR when it is appropriate for the behavior of interest can make quite effective use

of the PLEs as long as they are careful to attend to the potential for bias.

Results: AIR

Figure 6 displays the RMSEs for the MLEs and PLEs for AIR data across a range

of K for each parameterization. The MLEs perform reasonably well at a moderate

number of intervals (K = 60) for all parameterizations but logit(φ). For both estimates

of prevalence and incidence the PLEs are always at least as accurate as the MLEs, and

often considerably more accurate when the the number of intervals is moderate to small

(K ≤ 60).

Figure 7 displays the RMSEs for the PLEs for each of the recording methods and

each of the parameterizations. For estimation of prevalence, both AIR and MTS are

have superior accuracy to PIR. In general, the RMSE for MTS is slightly lower than

AIR, but the ranges of the distributions are similar. For estimation of incidence, AIR

provides much greater accuracy than MTS or PIR, particularly for moderate or large

session lengths. Although MTS is superior to PIR, the RMSE and relative RMSE based

on these methods is still fairly large in absolute terms, even for long observation sessions

(K ≥ 120).

Figure 8 illustrates the minimum session length required for the PLEs based on

AIR data to have low bias. For both of the natural parameterizations, as long as the
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Figure 5 . Minimum number of PIR intervals required to obtain PLEs with absolute bias

less than given criteria.

incidence is not extremely low (ζ ≥ 0.10c), approximately unbiased estimates can be

obtained even when the session length is moderate (K ≥ 40). For logit(φ), as long as

prevalence is neither very low nor very high (0.25 ≤ φ ≤ 0.75), approximately unbiased

estimates can be obtained across the entire range of incidence. Furthermore, the

portions of the parameter space requiring a longer session length (80 ≤ K ≤ 100) are

relatively limited. For log(ζ), only a moderate session length (K ≤ 50) is required to

obtain low-bias estimates across the entire range of the parameter space.

In general, the AIR method performs very well at a moderate number of intervals.

If a researcher was interested in the natural parameterization of both prevalence and
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Figure 6 . Distribution of root mean-squared error of MLEs and PLEs based on AIR

data, across range of 0.05 ≤ φ ≤ 0.95 and 0.05 ≤ ζ ≤ 0.50. Values above 1.5 are not

displayed. For ζ, the root mean-squared error is relative to the true value.

incidence and a behavior that occurs with moderate incidence (ζ ≥ 0.15c), they could

obtain low-bias estimates with sessions as short as K = 30. Although the MTS PLEs

provide slightly more accurate estimates of prevalence for a given session length, the the

estimates of incidence based on AIR are much more accurate. Furthermore, the

advantages of using AIR could be further increased by using intervals shorter than

c = 2. Thus, the theoretical advantages of this novel recording procedure warrant

further investigation of its practical feasibility.
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Figure 7 . Distribution of root mean-squared error of PLE estimates based on AIR, MTS,

and PIR data, across range of 0.05 ≤ φ ≤ 0.95 and 0.05 ≤ ζ ≤ 0.50. Values above 1.5

are not displayed. For zeta, the root mean-squared error for is relative to the true value.

Application

This section demonstrates the use of the PLEs with empirical behavioral

observation data drawn from a generalizability study conducted by Johnson (2014). In

this study, trained raters watched six scripted, pre-recorded, ten-minute videos of a

classroom during a lesson. The script outlined when students in the classroom were to

act academically engaged or to act disruptively. For each video, academic engagement

behavior was coded using three different recording systems: MTS, PIR, and WIR. All

three systems used 15 s intervals, yielding a total of 40 intervals per scored clip. Each

video clip was independently coded by ten different raters using each of the recording
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Figure 8 . Minimum observation session length required to obtain PLEs based on AIR

data with absolute bias less than given criteria.

systems.

The goal of our analysis is to estimate the prevalence and incidence of the behavior

observed in each video clip, using the data from each of the three recording systems.

Because each video was scored separately using each system, comparing the PLEs

obtained from each type of data allows us to characterize the relative strengths and

weaknesses of the observation recording methods. The fact that each clip is scored by

multiple raters captures a source of measurement error that the Alternating Poisson

Process model does take into account: “inter-rater” error, due the human observers not

perfectly following the scoring procedure or not perceiving the behavior stream with
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Figure 9 . MTS, PIR, and WIR summary proportions for each rater, by clip. Horizontal

dashed lines correspond to the average MTS summary proportions.

perfect accuracy.

Figure 9 plots the overall proportion of intervals with academic engagement for

each clip and each recording procedure, with separate points for each rater. The

horizontal dashed lines represent the average of the MTS proportions across all ten

raters, which we treat as a benchmark for the prevalence estimates based on the

Alternating Poisson Process. The PIR proportions are almost all higher than the

unbiased MTS proportions, while the WIR proportions are nearly always lower, which is

consistent with the fact that the PIR summary proportion is an upwardly biased

estimate of prevalence while the WIR proportion is a downwardly biased estimate of

prevalence. The prevalence of academic engagement is quite high–above .80–in clips A,

C, and D. In these three clips, the PIR proportions are frequently at or very near to the

ceiling level.
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Figure 10 . PLE estimates of prevalence versus proportion of intervals with behavior, for

each recording system and each rater. Vertical whisker bars correspond to 95%

confidence intervals for prevalence, obtained using a parametric bootstrapping

procedure. Horizontal dashed lines correspond to the average MTS summary

proportions.

Figure 10 displays the PLEs for prevalence based on the MTS, PIR, and WIR

scores for each rater and each clip. The prevalence estimates are plotted on the vertical

axis, with the corresponding summary proportion of intervals on the horizontal axis.

The quality of the estimates varies substantially by both recording procedure and by

clip. For MTS, the PLEs are all close to the raw proportions (which are unbiased

estimates of prevalence). The MTS confidence intervals cover the benchmark prevalence

estimate in 58 out of the 60 MTS records and are generally narrower than the confidence

intervals based on the PIR and WIR data. The PLEs based on PIR and WIR are in
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Figure 11 . PLE estimates of incidence versus proportion of intervals with behavior, for

each recording system and each rater. Vertical whisker bars correspond to 95%

confidence intervals for incidence, obtained using a parametric bootstrapping procedure.

roughly in the same range as the estimates based on MTS data. Thus, on a gross level,

the PLEs appear to correct the over- or under-estimation of prevalence in the summary

proportions. The confidence intervals based on PIR data cover the benchmark

prevalence estimate in 47 out of the 60 total records, with most of the discrepancies

occurring in clip A, where many of the the PIR records are at ceiling. The confidence

intervals based on WIR data cover the benchmark prevalence estimate in 54 out of 60

records. However, the PIR and WIR estimates are less precise than the MTS estimates,

with slightly wider confidence intervals. The mean width of the MTS CIs is 0.295,

whereas the mean widths of the PIR and WIR CIs are 0.324 and 0.343 respectively.

Figure 11 displays the penalized likelihood estimates of incidence for each rater
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and each clip, again plotted against the raw proportion of intervals. Note that the

vertical axis of this plot is on the log scale. In clips A through E, the estimates of the

incidence of academic engagement are very high, suggesting that the student cycled

rapidly between episodes of engagement and disruption. However, based on the

simulation evidence presented in the previous section, we do not have great confidence

in these estimates. For the moderate sample size of K = 40, none of the recording

methods provide reasonable estimates of incidence for behaviors with high prevalence

(φ > 0.5) and high incidence (ζ > 0.5). In clip F, the estimates of incidence are more

moderate, suggesting bouts of engagement occurring about every 4 to 8 intervals (1 to 2

min). While the PIR and WIR estimates for Clip F are probably not trustworthy,

simulation evidence suggests that the MTS estimates might have relatively low bias.

Unfortunately, we do not have any benchmark estimate of the true incidence of

academic engagement in each of the clips. Lacking a credible point of comparison, we

cannot directly evaluate the accuracy of the incidence estimates. However, the MTS

PLEs have the closest agreement to the MTS proportion estimates and the CIs for the

MTS prevalence estimates are generally tighter. Furthermore, the simulation results

from Figures 3 5 indicates that MTS generally requires fewer intervals for low-bias

estimates. Taken together, this evidence suggests that MTS is the best choice among

the three conventional intermittent recording procedures.

Discussion

In this paper, we have considered how to estimate the prevalence and incidence of

a state behavior from data collected using conventional intermittent observation

recording systems, including momentary time sampling, partial interval recording, and

whole interval recording. Following earlier work by Brown et al. (1977) on MTS, we

used an Alternating Poisson Process to model the behavior stream as perceived by the

observer, from which models for PIR and WIR data can be derived. For estimating the

model parameters, simulation evidence indicated that penalized likelihood methods with
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generic, weak priors generally outperformed maximum likelihood methods–often

dramatically so. For PIR data, penalized likelihood estimates of prevalence provided

much more accurate estimates than the naivë summary proportion, which is currently

widely used.

We have also described a novel recording procedure, augmented interval recording,

that involves combining MTS, PIR, and WIR. For a given period of observation, and

using intervals twice the length of other procedures, AIR provides estimates of

prevalence that are only slightly less accurate than estimates based on MTS, while also

providing estimates of incidence that are substantially more accurate than estimates

based on any other procedure. Of course, at present these advantages are only

theoretical. To determine whether AIR offers any advantage in practice, its feasibility in

real-life research contexts will need to be assessed.

Across all of the recording procedures that we have considered, the foremost

limitation of the proposed models and estimation techniques is the strength of the

assumptions entailed by the Alternating Poisson Process model for the behavior stream.

The model posits that the individual episodes of behavior and spans of time in between

episodes are exponentially distributed. Whether these distributional assumptions are

reasonable–and for what classes of behavior–is an important question requiring further

empirical research. Addressing it will likely require measuring the behavior of a large

sample of participants using intensive, continuous recording techniques. Another related

avenue of further research is to examine the extent to which the proposed estimation

techniques are robust to violations of the distributional assumptions (e.g., assuming that

event durations follow a gamma distribution that has lower variance than the

exponential). It may well be that the robustness of the PLEs depends on which system

is used to record the data, and whether prevalence or incidence is of primary interest.

Several other limitations of these models should also be acknowledged. Our

approach has treated the recording procedures themselves as essentially mechanical



ESTIMATING PARAMETERS OF A STATE BEHAVIOR 36

procedures that can be applied without human error, yet in practice the procedures are

not perfectly reliable–as evidenced by the high level of inter-rater variability in the

Johnson (2014) data. Arguably, the model we have considered could be interpretted as

implicitly accommodating rater error by allowing that the Alternating Poisson Process

describes the observer’s perception of the behavior stream, rather than the true behavior

stream. However, a more explicit approach to accounting for human error in the

recording process would be more useful. How to extend the model in this respect

remains an open question for further research.

Another limitation of the models is that they are limited to describing

measurement error from a single observation session. In practice, systematic behavioral

observation data is often collected on a single participant across many sessions (as in a

single-case study) or across many participants (as in a between-subjects experiment). In

either setting, it would be useful to embed the measurement model that we have

proposed in a generalized linear modeling framework, which could be used to describe

changes in prevalence and incidence across time, or in a random-effects framework,

which could be used to describe between-subjects variation in the characteristics of

behavior streams.

Despite these limitations, the models and estimation methods that we have

proposed are nonetheless useful. For MTS data, penalized likelihood provides a means

to estimate incidence as well as to assess the extent of measurement error in the

estimate of prevalence. For PIR data, the penalized likelihood estimates of prevalence

represent an improvement over the current standard approach, which is to simply ignore

the bias in the summary proportion. Though not the focus of the present paper, the

models that we have described can also be applied to develop better psychometric

guidance for behavioral observation data. Through further mathematical analysis or

though computer simulation, the models that we have presented could be used to study

how choices regarding recording procedures, interval lengths, rest times, and observation



ESTIMATING PARAMETERS OF A STATE BEHAVIOR 37

session lengths influence the precision of behavioral measurements. Guidance regarding

these aspects of study design would be useful to applied researchers designing single-case

experiments or between-subjects trials.
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Appendix A

Derivation of PIR model

The joint distribution of PIR observations depends on the conditional probabilities

ψk = Pr [Z(tk) = 1 |U1, ..., Uk−1 ]. This appendix provides a derivation of Expression (7)

in terms of the parameters of the Alternating Poisson Process. The derivation will make

use of the following lemma.

Lemma 1. The conditional probabilities of Z(tk) = 1, Uk−1 = 1 given Z(tk−1) are:

Pr (Z(tk) = 1, Uk−1 = 1 |Z(tk−1) = 1) = p1(c+ d)

Pr (Z(tk) = 1, Uk−1 = 1 |Z(tk−1) = 0) = p0(c+ d)− p0(d) exp
(
−ζc

1− φ

)
.

Proof. Observe that

Pr (Z(tk) = 1, Uk−1 = 1 |Z(tk−1) = 1) = Pr (Z(tk) = 1 |Z(tk−1) = 1) = p1(c+ d)

and

Pr (Z(tk) = 1, Uk−1 = 1 |Z(tk−1) = 0)

=
∫ c

0

p1(c− t)ζ
(1− φ) exp

(
−ζt

1− φ

)
dt

= φ

[
1− exp

(
−ζ(c+ d)
φ(1− φ)

)
− exp

(
−ζc

1− φ

)
+ exp

(
−ζ(φc+ d)
φ(1− φ)

)]

= p0(c+ d)− p0(d) exp
(
−ζc

1− φ

)
.

Turning to the derivation of ψk, begin by noting that Uk−1 = 0 implies that

Z(tk + c) = 0. It follows from the Markov property that

Pr (Z(tk) = 1 |U1 = u1, ..., Uk−2 = uk−2, Uk−1 = 0)

= Pr (Z(tk) = 1 |Z(tk−1 + c) = 0) = p0(d).
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Next, Lemma 1 implies that

Pr (Z(tk) = 1, Uk−1 = 1 |U1, ..., Uk−2 )

= ψk−1p1(c+ d) + (1− ψk−1)
[
p0(c+ d)− p0(d) exp

(
−ζc

1− φ

)]
.

It therefore follows that

Pr (Z(tk) = 1 |U1 = u1, ..., Uk−2 = uk−2, Uk−1 = 1)

=
ψk−1p1(c+ d) + (1− ψk−1)

[
p0(c+ d)− p0(d) exp

(
−ζc
1−φ

)]
1− (1− ψk−1) exp

(
−ζc
1−φ

) .

Thus, ψk can be written as a function of ψk−1 and uk−1, as given in (7).
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Appendix B

Derivation of AIR model

This appendix provides a derivation of the transition probabilities for the AIR model in

terms of the parameters of the Alternating Poisson Process. Begin by noting that, by

the definitions of the recording procedures, Xk−1 = 0 implies that Wk = 0 and Xk−1 = 1

implies that Uk = 1. It follows that π0|bc1 = 0 for b, c = 0, 1 and π1|b0d = 0 for b, d = 0, 1.

Derivation of the other transition probabilities will make use of the following lemma.

(The proof follow the same logic as in Lemma 1, and is therefore omitted.)

Lemma 2. The conditional probability of Z(tk) = 1,Wk−1 = 0 given that Z(tk−1) = 1 is

Pr (Z(tk) = 1,Wk−1 = 0 |Z(tk−1) = 1) = p1(c+ d)− p1(d) exp
(
−ζc
φ

)
.

Turning to the eight remaining transition probabilities, note that

π0|100 = Pr (Xk = 1, Uk = 0|Xk−1 = 0)

= Pr (Xk = 1|Z(tk + c) = 0) Pr (Uk = 0|Xk−1 = 0)

= p0(d) exp
(
−ζc

1− φ

)
.

Similarly,

π0|000 = Pr (Xk = 0, Uk = 0|Xk−1 = 0) = [1− p0(d)] exp
(
−ζc

1− φ

)

π1|111 = Pr (Xk = 1,Wk = 1|Xk−1 = 1) = p1(d) exp
(
−ζc
φ

)

π1|011 = Pr (Xk = 0,Wk = 1|Xk−1 = 1) = [1− p1(d)] exp
(
−ζc
φ

)
.

Next, it follows from Lemmas 1 and 2 that

π0|110 = Pr (Xk = 1, Uk = 1|Xk−1 = 0) = p0(c+ d)− p0(d) exp
(
−ζc

1− φ

)

π1|110 = Pr (Xk = 1,Wk = 0|Xk−1 = 1) = p1(c+ d)− p1(d) exp
(
−ζc
φ

)
.
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The two remaining transition probabilities can be obtained by subtraction:

π0|010 = 1− π0|000 − π0|100 − π0|110 = 1− p0(c+ d)− [1− p0(d)] exp
(
−ζc

1− φ

)

π1|010 = 1− π1|011 − π1|110 − π1|111 = 1− p1(c+ d)− [1− p1(d)] exp
(
−ζc
φ

)
.


