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The research synthesis process ( )
1. Problem formulation

2. Literature search & screening

3. Coding included studies and effect sizes

4. Evaluating quality of evidence

5. Synthesizing effect sizes

6. Critical assessment

7. Presentation & reporting

Cooper 2015

3



The research synthesis process ( )
1. Problem formulation

2. Literature search & screening

3. Coding included studies and effect sizes

4. Evaluating quality of evidence

5. Synthesizing effect sizes

5a. Preliminary analysis (data integrity checks, descriptive analysis, sense-
making)

5b. Formal modeling (meta-analysis, meta-regression, etc.)

6. Critical assessment

7. Presentation & reporting

Cooper 2015
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We don’t talk about
preliminary data analysis
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Preliminary analysis methods are rarely discussed
Experienced reviewers surely have well-developed routines—but what are
they?

Less-experienced reviewers might not devote adequate attention to
preliminary analysis.

Recent scholarship in other areas conceptualizes initial data analysis as a
formal process and bring more structure to how analysts engage in it
( ; ; ; ).Huebner et al. 2018 Baillie et al. 2022 Heinze et al. 2024 Lusa et al. 2024
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Dependent effect sizes
Dependent effect sizes are ubiquitous in
education and social science meta-analyses.

They lead to complex structures in meta-
analytic databases.

We have well-developed methods for
modeling dependent effect sizes.

But what about preliminary analysis?
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PReliminary Investigation of MEta-analytic Databases
(PRIMED)

Describe the amount of data and its dependence structure

Explore study characteristics and potential moderators

Inspect standard errors and other auxilliary data

Visualize the distribution of effect size estimates

Descriptive summary tables

Graphic visualizations
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Examples
Spiritual Well-Being Review ( )

Meta-analysis of psycho-social interventions for adult cancer patients and
survivors.

Focused on distribution of intervention effects on spiritual well-being
outcomes, how these effects vary as a function of study characteristics.

McLouth et al. 2021

Narrative Assessments Review ( )
Meta-analysis of descriptive differences between groups of children with
developmental language disorder (DLD) and those with typical development
on narrative assessment measures.

Many primary studies reported differences on multiple narrative assessments.

Winters et al. 2022
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Describe the amount of data and its dependence
structure
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Describe the amount of data and its dependence
structure

How much data do you have?

What is its structure (with respect to dependent effects)?

How large are the included studies?

Verify that the database is complete and consistent with inclusion criteria.

Understand how precisely we will be able to learn about the distribution of effects.

Inform model selection and sensitivity to modeling assumptions.

Why?
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Spiritual Well-Being Review

Narrative Assessments Review
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Sample size distributions
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Explore study characteristics and potential moderators

14



Explore study characteristics and potential moderators
What are the distributions of descriptive study characteristics / moderator
variables?

How completely are study characteristics reported?

How are study characteristics related to the dependence structure?

Check data integrity, consistency with operational definitions.

Identify sparse categories, outliers.

Identify opportunities for / constraints on moderator analysis.

Why?
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Marginal distributions of study characteristics
Spiritual Well-Being Review
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Hierarchical structure of study characteristics
Spiritual Well-Being Review
Range plot of a
continuous, effect-level
covariate

Dependency table for a
categorical, effect-level
covariate

Intervention class (A) (B) (C) (D) (E) (F)

(A). Skills Based/CBT 12 (27) 1 (3)

(B). Meditation/Yoga 10 (17) 2 (7)

(C). Education/Healthy Lifestyle Behaviors 2 (7) 5 (12)

(D). Meaning/Existential 1 (3) 7 (12)

(E). Creative Arts 5 (10)

(F). Multimodal 5 (10)

Values outside parentheses indicate the number of studies;

values in parentheses indicate the number of effect size estimates.
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Hierarchical structure of study characteristics
Narrative Assessments Review
Dependency table for a
categorical, effect-level
covariate

Assessment type (A) (B) (C) (D)

(A) ISL 3 (4, 20) 3 (4, 20) 2 (2, 18)

(B) Macro 3 (4, 13) 26 (39, 111) 22 (33, 87) 4 (11, 11)

(C) Micro 2 (2, 31) 22 (33, 153) 31 (49, 235) 4 (11, 15)

(D) Mixed 4 (11, 14) 4 (11, 14) 6 (13, 16)

Values outside parentheses indicate the number of studies;

values in parentheses indicate the number of samples and number of effect size estimates.
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Further questions about study characteristics
Multivariate structure of study characteristics

Scatterplot matrices ( )

Cluster analysis ( ; 
)

Missingness rates and missingness structure ( )

Schloerke et al. 2024

Jaeger and Banks 2023 Spineli, Papadimitropoulou, and
Kalyvas 2025

Schauer et al. 2022
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Inspect standard errors and other auxilliary data
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Inspect standard errors and other auxilliary data
What is the distribution of standard errors

To what extent do standard errors vary within studies?

Check for accuracy.

Identify potential anomolies

Assess allocation of weight in summary meta-analysis

Why?
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Standard error distribution
For standardized mean differences (SMDs), Fisher -transformed correlations,
and some other effect metrics, effect size estimates from the same sample
should usually have very similar standard errors.

z

For SMDs, variation in SEs is partially because of correlation between ES and
SE ( ).

Remove this correlation by calculating the scaled standard error:

where  is the effect size estimate and  is its degrees of freedom

Pustejovsky and Rodgers 2019

SSEij = √(SE)2
ij −

d2
ij

2νij

d ν
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SE distribution in Narrative Assessments Review
Raw SEs Scaled SEs
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Weight distribution
Weight allocated to each study depends on
the formal model.

But we can consider a simple model with no
heterogeneity.

Inverse sampling covariance (ISC) weight
for study :

where  is the average standard error, 

is the number of effect sizes, and  is the
(assumed) correlation between effect size
estimates.

j

wj =
kj

σ2
j [(kj − 1)ρ + 1]

.

σ2
j kj

ρ

24



Other auxilliary quantities
For  or  effect sizes

Cronbach’s  coefficients

test-retest reliabilities

For  effect sizes

sample standard deviations by scale

For odds ratio or risk ratio effect sizes

baseline risk levels

r z

α

d
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Visualize the distribution of effect size estimates
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Visualize the distribution of effect size estimates
What is the distribution of effect size estimates?

What is the hierarchical structure of effect size estimates?

Check for accuracy (e.g., valence consistency)

Identify potential outliers

Consider potential modeling assumptions for effect heterogeneity.

Why?
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Marginal distribution of effect size estimates
Narrative Assessments Review
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

Hierarchical forest plot



Narrative
Assessments
Review
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Discussion
Validity of inferences based on any statistical model depends on

integrity and accuracy of the input data

sound modeling assumptions

PRIMED workflow seeks to describe a useful preliminary data analysis process
for meta-analysis.

Most useful for larger databases of studies with heterogeneous features.

Intended as a scaffold, not a complete, rigid procedure.

How to (semi-)automate PRIMED?

How to share preliminary analysis workflows?

How to incorporate into pre-registered systematic review processes?

Preprint available at https://osf.io/preprints/metaarxiv/vfsqx_v1
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