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ABSTRACT

Operationally Comparable Effect Sizes for Meta-Analysis

of Single-Case Research

James E. Pustejovsky

This thesis studies quantitative methods for summarizing and synthesizing single-case

studies, a class of research designs for evaluating the effects of interventions through

repeated measurement of individuals. Despite long-standing interest in meta-analytic

synthesis of single-case research, there remains a lack of consensus about appropriate

methods, even about the most basic question of what effect size metrics are useful and

appropriate. I argue that operational comparability, or invariance to heterogeneous opera-

tional procedures, is crucial property for an effect size metric. I then consider two problems

with operational comparability that arise in single-case research. The first problem is to

find effect sizes that can be applied across studies that use different research designs, such

as single-case designs and two-group randomized experiments. The second problem is to

find effect sizes that can be applied across studies that use varied operations for measur-

ing the same construct. To address each of these problems, I propose structural models
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that capture essential features of multiple relevant operations (either design-related oper-

ations or measurement-related operations). I then use these structural models to precisely

define target effect size parameters and to consider identification issues and estimation

strategies.

Chapter 1 defines operational comparability and situates the concept within the broad

methodological concerns of meta-analysis, then reviews relevant features of single-case

research and previously proposed effect sizes. Chapter 2 describes an abstract set of

modeling criteria for constructing design-comparable effect sizes. Chapters 3 applies the

general criteria to the case of standardized mean differences and proposes an effect size es-

timator based on restricted maximum likelihood. Chapter 4 presents several applications

of the proposed models and methods. Chapter 5 proposes measurement-comparability

model and defines effect size measures for use in studies of free-operant behavior, one

of the most common classes of outcomes in single-case research. Chapter 6 extends the

proposed effect size models to incorporate more complex features, including time trends

and serial dependence, and studies a method of estimating those models through a combi-

nation of marginal quasi-likelihood and Gaussian pseudo-likelihood estimating equations.

Chapter 7 collects various further extensions, areas for further research, and concluding

thoughts.
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CHAPTER 1

Operational comparability and single-case research

This thesis considers quantitative methods for synthesizing single-case research. Single-

case research is both a set of research methods and a body of empirical research that

applies those methods. In the former sense, single-case research is a set of designs and

procedures for evaluating the effects of interventions, practices, or programs on individual

cases. These single-case designs (SCDs) have in common the use of repeated outcome

measurements on each case, the deliberate manipulation of the treatment, and the use of

each case as its own control. In the latter sense, empirical single-case research appears

in many areas of psychology and education, particularly in special education, school psy-

chology, clinical psychology, psychotherapy, social work, and applied behavior analysis

(Horner et al., 2005; Kazdin, 2011; Kennedy, 2004). Methodologically similar research

also appears in medicine and public health (Gabler, Duan, Vohra, & Kravitz, 2011).

By nature of the research methods employed and how study results are analyzed,

single-case research emphasizes individual change. Single-case designs intend to identify

individual treatment effects through comparison of outcomes measured on the same indi-

vidual at different points in time. Studies often report separate results for each case, with

little emphasis on overall averages across cases. This ideographic orientation presents a

trade-off: while study designs may be tailored so that their results are highly relevant to

the individual cases involved, each study provides meager evidence for drawing generalized

inferences.



17

Meta-analytic synthesis has long been considered as an approach for summarizing

and generalizing from single-case studies. Just as other fields began to take growing

interest in meta-analysis, Gingerich (1984) argued that synthesis of single-case research

could improve the precision of individual treatment effect estimates, bolster the internal

validity of single studies through replication, and provide a means for studying variation

in treatment effectiveness and generalizing from a collection of studies. Others noted the

drawbacks of excluding single-case studies from comprehensive syntheses (e.g., Allison &

Gorman, 1993; Scruggs & Mastropieri, 2012). In response, several effect size statistics

and meta-analytic approaches were developed specifically for single-case research (Busk

& Serlin, 1992; Center, Skiba, & Casey, 1985; Gorsuch, 1983; Scruggs, Mastropieri, &

Casto, 1987).

The past two decades have seen a growing emphasis across the fields of education,

medicine, and social policy on tying professional practice more closely to empirical re-

search. This emphasis has spurred interest among scholars and policy-makers in using

quantitative synthesis methods to identify evidence-based practices and programs (Shavel-

son & Towne, 2002; Slavin, 2008). In response, fields that use single-case research have

articulated standards of scientific evidence and attempted to codify synthesis methods

(Chambless & Ollendick, 2001; Gast, 2010; Horner et al., 2005; Kratochwill & Stoiber,

2002; Odom et al., 2005). As interest has grown, syntheses of single-case research now

appear with increasing frequency (Maggin, O’Keeffe, & Johnson, 2011). Furthermore,

large research synthesis projects such as the What Works Clearinghouse (WWC) have

recently broadened the scope of their evidence standards to include evidence from single-

case research (Kratochwill et al., 2012).
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Despite long-standing interest among single-case researchers and increased attention

due to the evidence-based practice movement, there is little consensus regarding how

single-case studies should be synthesized. Even the most basic question of what effect size

metric to use for meta-analysis remains unresolved, though proposals have proliferated

(for reviews of candidate effect size metrics, see Beretvas & Chung, 2008b; Wolery, Busick,

Reichow, & Barton, 2010). Existing approaches are nearly all subject to serious conceptual

or technical criticisms (Shadish, Rindskopf, & Hedges, 2008), a situation that led the

authors of the WWC pilot standards to refrain from recommending any specific effect size

metrics or particular statistical approaches to analysis of single-case data.

This thesis addresses two problems related to effect size definition and meta-analysis

of single-case research. The first problem is to find effect sizes that can be applied across

studies that use different research designs, such as single-case designs and two-group

randomized experiments; I term such effect size metrics design-comparable. The second

problem is to find effect sizes that can be applied across studies that use varied operations

for measuring the same construct, such as different tests of math achievement or different

procedures for measuring the prevalence of self-injurious behavior; I term such effect size

metrics measurement-comparable. Both problems can be understood as specific dimen-

sions of operational comparability, or the extent to which a metric can be interpreted in

terms of scientifically meaningful constructs, across multiple, heterogeneous instances of

study operations. To address each of these problems, I propose structural models that

capture essential features of multiple relevant operations (either design-related operations

or measurement-related operations). I then use these structural models to precisely define

target effect size parameters and to consider identification issues and estimation strategies.
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The remainder of this chapter provides additional context regarding operational com-

parability and single-case research. In the next section, I explain the motivation for

seeking operationally comparable effect sizes, noting other areas of meta-analysis where

similar problems appear. In the following section, I survey the characteristics of single-

case research that are relevant to the problems at hand, including the major types of

single-case designs and common approaches to outcome measurement. I then review ex-

isting proposals for single-case effect sizes and meta-analysis. In the final section, I outline

the broad organization of this thesis.

1.1. Operational comparability

One of the central questions in any quantitative research synthesis is how to opera-

tionally define the effect size metric, the basic unit of analysis in a meta-analysis (Cooper,

2009). In some cases, the choice of effect size may be straight-forward. If the empirical

evidence to be synthesized is confined to a specialized field or a specific, narrow topic,

research practices may be homogeneous to such an extent that the choice of effect size

becomes a matter of disciplinary conventions. Yet a research synthesis may have a more

ambitious aim and broader scope than to synthesize narrowly delineated sets of studies.

For syntheses that seeks to combine evidence across varied or complex study designs,

based on disparate operational procedures, or across diverse fields, operational definition

of an effect size becomes more challenging.

The choice of effect size metric involves, implicitly or explicitly, an assumption about

the comparability of results from different studies that may use various participant inclu-

sion criteria, treatment procedures, outcome measurement instruments, or experimental
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designs (Hedges, 2008). An appropriate operational definition of effect size is therefore

crucial for maintaining the construct validity of the synthesis–that is, the extent to which

the operations employed in individual studies can be taken as measures of a common un-

derlying phenomenon and can be meaningfully compared.1 In synthesizing results from

studies that use different operational procedures, one would like to use an effect size that

is on the same metric across all of them; I term such an effect size metric operationally

comparable.

Operational comparability is essential in that it allows the meta-analyst to control for

incidental characteristics related to study procedures and to focus instead on variation that

is of scientific interest (cf. Rubin, 1992). Without operational comparability, a collection of

effect sizes will exhibit heterogeneity due merely to procedural differences in how the study

was carried out. For instance, imagine a set of studies that are exact replications–including

using samples of units from the same population–except for one aspect of the studies’

procedures. Unless the effect size metric used to summarize the studies is operationally

comparable with respect to that procedural aspect, the results will differ by more than

would be expected due to sampling variation alone. In the more realistic circumstance

that studies differ along many different dimensions, lack of operational comparability will

1The construct validity of an individual study is an assessment of the extent to which the theoretical
constructs employed in formulating the research question are appropriately represented by the specific
operations employed (Shadish, Cook, & Campbell, 2002). The construct validity of a research synthesis
goes further, because a meta-analyst must classify not just one but multiple and diverse studies according
to whether their operations fall under common construct domains. In this sense, the inclusion and exclu-
sion criteria of a meta-analysis constitute an operational definition of the relevant constructs referenced
by the research question at hand. The effect size metric chosen for a synthesis provides the scale on which
results of different studies are weighed; the assumption is not only that the various study operations all
fall under relevant constructs, but that the resulting effect size estimates are comparable on the chosen
metric.
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tend to obscure substantive differences among study results and will reduce not only the

precision of meta-analytic summaries, but their basic interpretability.

Complete operational comparability may seem an impossible standard to achieve given

the array of procedural decisions that must be made in any empirical study. In practice,

meta-analysts use effect size metrics that are operationally comparable for only the most

salient features of a collection of studies. Take, for example, the standardized mean

difference, a ubiquitous effect size for measuring a difference between two groups. The

standardized mean difference is the ratio of the difference in mean outcomes between

two groups to the standard deviation of one of the groups (or of both, if their variances

are assumed to be equal). A strong rationale for using the standardized mean difference

rather than the equally ubiquitous p-value as a measure of group differences is that only

the former is operationally comparable across studies employing different sample sizes or

treatment group allocations (Borenstein, 2009).

A further example can be found in syntheses of education- and employment-selection

test validity studies. In this field, data often exhibit range restriction as a result of some

selection process, such as when an aptitude test is given to a sample of job applicants

but job performance measures are available only for those who are subsequently hired.

Corrections for range restriction are applied because scientific interest is in the correla-

tion between the test and performance measures in the unrestricted population (Hunter,

Schmidt, & Le, 2006; Mendoza & Mumford, 1987). The unrestricted correlation is the

operationally comparable effect size metric, to be estimated across studies that use various

selection criteria.
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Inevitably, one must rely on a set of modeling assumptions in order to establish the

operationally comparability of an effect size metric across variations of a particular op-

erational feature. If those modeling assumptions do not hold, then the effect size metric

may not be operationally comparable, or may be only approximately so. For example,

the correction for range restriction of correlation coefficients relies on the assumption that

the two variables are bivariate normally distributed in the unrestricted population; if this

assumption does not hold, the corrected effect size statistic may be inaccurate even in

large studies, with a sampling distribution that depends on population characteristics

other than the bivariate correlation.

In circumstances where modeling assumptions do not hold or where no model for

operational comparability can be found, the meta-analyst might turn to meta-regression

techniques to explain variation in effect sizes due to study procedures. This strategy

can provide useful insights about the methodological assumptions and practices employed

in a field (c.f. Shadish & Ragsdale, 1996; Shager et al., 2012). Still, lacking a model

of operational comparability, results that depend on arbitrary procedural characteristics

remain difficult to interpret in terms of the substantive scientific questions that motivate a

research synthesis. I now consider specific dimensions of operational comparability related

to study design and to outcome measurement procedures.

1.1.1. Design-comparability

The design of a study can be understood as the planned pattern of measurements: which

variables are measured at which times on which units; in experimental designs, this in-

cludes how units are selected (i.e., sampling issues) and assigned to treatment conditions.
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The need to synthesize studies that use different designs arises in many areas of research

synthesis. The following examples highlight areas in which design-comparability problems

arise:

• For psychological experiments, Morris and DeShon (2002) discuss different ef-

fect size metrics that can be used to summarize single-group or two-group pre-

test/post-test designs, emphasizing comparisons between such designs and between-

groups designs that use only a post-test.

• In correlational studies, meta-analysts occasionally encounter designs (such as

extreme groups designs) that do not yield conventional correlation coefficients yet

still provide information about the bivariate association between two variables

(Preacher, Rucker, MacCallum, & Nicewander, 2005). In order to synthesize

such studies, one must convert reported effect sizes into the same metric as the

correlation coefficients that are generated by a conventional, bi-variate sampling

design (Pustejovsky, 2012).

• Though the standardized mean difference is an unambiguous parameter in simple

between-groups designs, many field experiments use randomized-block or cluster-

randomized designs in which multiple variance components are identified. In

such designs, several different standardized mean difference effect sizes might be

defined, necessitating careful consideration of their design-comparability (Donner

& Klar, 2002; Hedges, 2007, 2011).

• In epidemiology, various study designs are used to measure the effect of a binary

exposure on a binary outcome measure, including prospective cohort designs and

case-control designs. In contrast to metrics such as risk ratios or risk differences,
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odds ratios allow a direct comparison between results of these designs, at least

under certain modeling assumptions (Fleiss & Berlin, 2009).2

• In medical trials, meta-analysts may need to combine evidence from parallel-

group trials with that from cross-over trials, in which each unit receives multiple

treatment conditions at different points in time (Elbourne et al., 2002). Curtin,

Altman, and Elbourne (2002a, 2002b) study the comparability of various effect

size metrics for syntheses that include both designs. Others have developed

models and methods for combining data from varied, often idiosyncratic trial

designs in specific areas of application (e.g., Frost, Clarke, & Beacon, 1999; Tvete

et al., 2012).

Although Sutton and Higgins (2008) characterize combination of evidence from multiple

types of study designs as “complex synthesis” (p. 633) in order to draw a contrast with

conventional meta-analysis, design-comparability is nonetheless an important considera-

tion in many areas of application.

The design-comparability of an effect size estimate is distinct from its internal validity.

In studies of causal treatment effects, an effect size might be design-comparable under a

certain model yet internally invalid if that model does not adequately account for con-

founding factors. Conversely, a treatment effect size estimate may be internally valid yet

lack design-comparability with a between-groups randomized experiment. Consequently,

if a meta-analysis seeks to evaluate empirically the internal validity of a research design

by comparing results to randomized experiments in the same field (e.g., Shadish & Rags-

dale, 1996), design-comparable effect sizes are required in order to separate any bias of

2For a critique of odds ratios as a design-comparable metric, see Greenland (1987).
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treatment effects from differences in metric. Without design-comparability, the effect size

metric itself will confound true differences in internal validity across study types.3

In single-case research, the WWC standards highlight the need for design-comparable

effect sizes, noting in particular that “an [effect size] estimator for SCDs that is com-

parable to those used in traditional group studies is badly needed” (Kratochwill et al.,

2012, p. 10).4 The need for design-comparable effect sizes is further demonstrated by po-

tential for application. There exists evidence from both single-case and between-groups

designs on a number of topics, including phonological awareness training programs (What

Works Clearinghouse, 2012), repeated reading interventions (Chard, Ketterlin-Geller, &

Baker, 2009; O’Keeffe, Slocum, Burlingame, Snyder, & Bundock, 2012), reading fluency

interventions (P. L. Morgan & Sideridis, 2006), writing interventions (Graham & Perin,

2007; Rogers & Graham, 2008), positive behavioral interventions and supports (Bradshaw,

Mitchell, & Leaf, 2009; Horner et al., 2009; Marquis et al., 2000), and picture exchange

communication systems (Hart & Banda, 2009). Past syntheses on such topics have either

reported separate meta-analyses for each type of design or limited their scope to only one

type of design. Design-comparable effect sizes are required in order to combine evidence

from both types of designs. I describe a general approach to defining design-comparable

effect sizes for single-case designs in Chapter 2, then apply this approach to standardized

mean differences in Chapter 3.

3Questions about the design-comparability of effect sizes are less crucial when one can make within-study
comparisons of designs, particularly when outcomes can be measured using the same procedures for all
participants (Cook, Shadish, & Wong, 2008). This is one reason that empirical studies of research design
might privilege within-study comparisons over across-study meta-analysis.
4Horner, Swaminathan, Sugai, and Smolkowski (2012) also note the need for design-comparable effect
sizes, though they define comparability in a restrictive sense as being relative to the standardized mean
difference.
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1.1.2. Measurement-comparability

One of the primary difficulties in operationally defining an effect size is that studies in a

collection to be synthesized often use a variety of different measurement instruments, such

as different measures of spatial ability (e.g., Uttal et al., 2013) or reading achievement

tests from different states (e.g., Reschly, Busch, Betts, Deno, & Long, 2009). To account

for differences in measurement instruments, it is desirable that the magnitude of an effect

size not depend on the units of the measurement instrument. However, simply because

an effect size is unit-free does not imply that it is measurement-comparable. Rather,

measurement-comparability is addressed by a theory of the relationship between different

scales, perhaps expressed formally as a statistical model. I note three examples of such

theories.

First, consider again the standardized mean difference. Because both the mean differ-

ence (numerator) and standard deviation (denominator) are in the same units, their ratio

is unit-free. The standardized mean difference can be understood as a measurement-

comparable effect size for linearly-equatable, interval scale measures (Hedges & Olkin,

1985).5 That different instruments produce linearly equatable measures may seem a rather

tenuous theory, but in many circumstances, lack of further information prohibits the use

of any more elaborate model.

Next, methods for converting among different effect size metrics have been proposed

that rely on explicit theories of measurement-comparability. When groups are based on

dichotomization of a continuous, normally distributed variable, the standardized mean

5The standardized mean difference can also be justified as a more general scale capturing distributional
overlap (Hedges & Olkin, 1985).
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difference between the groups can be transformed to the same metric as the Pearson

correlation for measuring the bi-variate association between the outcome variable and the

underlying continuous variable on which the groups are based (Hunter & Schmidt, 1990).

Similarly, methods exist for converting odds ratios for binary outcomes into standardized

mean differences when the binary outcomes are based on dichotomization of a continuous,

latent scale (Chinn, 2000; Dominici, Parmigiani, Wolpert, & Hasselblad, 1999; Sánchez-

Meca, Maŕın-Mart́ınez, & Chacón-Moscoso, 2003).

Finally, Hunter and Schmidt (2004) have proposed methods for correcting correlation

coefficients and standardized mean differences based on the measured reliability of the

outcome measures. These reliability correction procedures are motivated by an implicit

model of measurement-comparability. For instance, one set of assumptions that justify

reliability corrections for the standardized mean difference are 1) that groups differ on

latent constructs that are imperfectly measured by the outcome variables and 2) that

outcome variables differ on the magnitude of their unique error variances.

Issues of measurement-comparability have been little explored in the context of single-

case research. As described further in Section 1.2.2 and in Chapter 5, the outcome mea-

sures in single-case studies are often intended to capture some aspect of an individual’s

behavior. Though several different procedures are commonly employed to measure be-

havior, previous work has addressed neither the comparability of measurements across

procedures nor the implications for effect sizes and meta-analysis. In Chapter 5, I pro-

pose a measurement model for one domain of behavioral measures (free-operant behavior)

and use that model to define and estimate effect sizes that are directly comparable across

measurement procedures.
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1.2. Features of single-case research

Models for the operational comparability of effect sizes must be appropriate and

reasonable for the areas of application. Thus, to motivate the development of design-

comparability and measurement-comparability models in later chapters, this section de-

scribes relevant characteristics of single-case research. I first survey the main types of

single-case designs because later analyses of design-comparability must be grounded in

the specific structures and internal logics of the designs. I then discuss the types of out-

comes and measurement procedures that are used in empirical work, in order to provide

a sense of the range of operations that measurement-comparability models will need to

encompass.

1.2.1. Varieties of single-case designs

Single-case research methods comprise several related designs, including multiple baseline,

treatment reversal, multiple (or alternating) treatment, and changing criterion designs

(Kazdin, 2011; Shadish et al., 2002). All of these designs share three characteristics: (1)

repeated measurement of an outcome over time on a set of individual cases; (2) planned,

deliberate manipulation of treatment assignment by the investigator; and (3) identification

of treatment effects through comparison of each individual’s outcomes across different

points in time (Horner et al., 2012). Beyond these defining features, the designs differ in

the patterns of treatment assignment within and across cases, with consequences for the

circumstances under which each design is feasible and appropriate.

The multiple baseline design is the most common and perhaps most conceptually

straight-forward SCD. The multiple baseline design involves multiple individual cases,
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on each of which an outcome is measured repeatedly during an initial baseline phase; a

new treatment is then introduced and remains in place while outcome measurement is

continued. The treatment is taken to have an effect if the stable pattern of outcomes

differs between baseline and treatment phases and if the change coincides with the in-

troduction of treatment. By staggering the point at which treatment is introduced for

different cases, the design rules out certain alternative explanations for observed changes

between phases (Kazdin, 2011; Shadish et al., 2002). Multiple baseline designs can also be

understood as collections of interrupted time series (Shadish et al., 2002). The single-case

design literature describes several types of multiple baseline designs, including multiple

baselines across individuals and multiple baselines across settings (Kazdin, 2011). In

some instances, multiple baseline designs also employ control cases that do not receive

treatment at all (e.g., Musser, Bray, Kehle, & Jenson, 2001).

Treatment reversal designs involve repeatedly introducing and then removing a treat-

ment. In the most common form, the ABAB design begins with a phase of baseline

measurement (A), followed by a treatment (B) phase, a removal of the treatment (A),

and a re-introduction of treatment (B). Clearly, such designs are limited to treatments

that can feasibly be removed. In many situations, the design is employed under the as-

sumption that treatment effects are transitory, so that removing the treatment will lead

to a return to baseline conditions. Horner et al. (2005) noted that, when treatment effects

are transitory, repeated introduction and removal provides “within-subject replication,”

which strengthens the internal validity of the inference that the treatment has an effect.

Multiple treatment designs compare two or more treatments by alternating between

treatment conditons over short periods of time, such as over multiple sessions on the same
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day (morning versus afternoon) or over different, commonly occuring stimulus conditions

(e.g., lining up for recess, preparing for snack time). The term “multiple” refers to the

use of multiple treatments within one phase of the study, rather than in separate phases.

Often, the design begins with a baseline phase in which an outcome is measured without

intervention. Following this, the alternating treatment phase is implemented; on the basis

of the data from this phase, the researcher might choose to continue only one intervention

into a further phase. Compared to the other types of SCDs, multiple treatment designs

are useful only under more restrictive circumstances. As discussed in Kazdin (2011, Chp.

9), the design is most useful in studying treatments with rapid onset and rapid dissipation.

Since different treatment conditions are implemented in rapid succession, the possibility

of carry-over effects or interference between treatments may threaten the internal validity

of inferences from multiple treatment designs. One important application of this design

is to conduct functional assessment of problem behaviors (Hanley, Iwata, & McCord,

2003), a diagnostic procedure that seeks to measure the effects of different categories of

antecedent conditions and contingent consequences on the behavior of an individual in

order to prescribe an appropriate intervention.

Finally, changing criterion designs are unique in that the intervention is defined in

terms of the performance level on a target outcome, and typically involves a consequence

or incentive for the participant to meet a performance criterion (Kazdin, 2011). As the

participant meets criterion, the criterion is shifted to a more stringent standard. The

relationship between intervention and outcome is demonstrated by a close correspondance

between the performance criterion and the level of the outcome.
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Randomization of treatment assignment can be introduced into any of these designs,

though doing so is rare in most areas of application (Kazdin, 2011). Kratochwill and

Levin (2010) illustrated how random starting points can be determined for use in the

multiple baseline design, and how random assignment of phases can be incorporated into

the (AB)k design. By analogy to between-subject randomized trials, they argued that

randomization improves the scientific credibility of the designs. Random assignment is

somewhat more common in medical applications of alternating treatment designs, in the

form of either completely random assignment or randomization within phase pairs (Gabler

et al., 2011; Guyatt et al., 1990, 1988; Larson, Ellsworth, & Oas, 1993). Guyatt et al.

(1988) established limited conditions in which randomized treatment reversal designs are

appropriate, namely when treatment has rapid onset and transience, when treatment

would be used for a long period of time, if effective, and where efficacy is truly in doubt.

In medical and public health settings, there is a also greater emphasis on use of random

assignment in conjunction with multiple baseline designs and the closely related stepped

wedge designs (C. A. Brown & Lilford, 2006; Hussey & Hughes, 2007; Rhoda, Murray,

Andridge, Pennell, & Hade, 2011).

In addition to the defining features of SCDs, it is also important to note characteristics

of the designs as applied in practice, as these empirical features are also relevant to the

application of statistical methods. Huitema (1985), Busk and Marascuilo (1988), Ham-

mond and Gast (2010), Shadish and Sullivan (2011), and Smith (2012) have surveyed the

design characteristics of published SCDs in the behavioral and social sciences.6 Shadish

6I cite the results of Shadish and Sullivan (2011) throughout because the other reviews from the past
decade were either not as detailed (Hammond & Gast, 2010) or appear to have included some extreme
outliers (Smith, 2012).
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and Sullivan (2011) described a census of SCDs published in 21 journals during 2008;

the authors identified over 100 studies containing over 400 individual cases. On aver-

age, each study reported 3.64 cases; nearly 75% of the studies used three or more cases.

The availability of multiple cases per study allows for identification of both within- and

between-case variation in the outcome, which is crucial for identifying design-comparable

effect sizes. Shadish and Sullivan (2011) also reported that SCDs tend to measure a small

or moderate number of observations per case. They found that each case contained an

average of 27 observations across multiple phases; furthermore, only 55% of relevant cases

contained five or more observations in the baseline phase. Such short phase lengths make

it challenging to rely on the data alone in order to determine appropriate models for

the outcome process. Therefore, statistical analysis of SCD data will in many instances

depend on relatively strong prior assumptions about the baseline process.

1.2.2. Outcome measurement

To guide development of measurement-comparability models, it is useful to first under-

stand the types of outcomes used in empirical single-case research, both at the level of

broad construct domains and in terms of operational procedures. Kazdin (2011) catego-

rized outcome variables used in single-case research according to whether they are based

on observation of overt behavior, on psychophysiological assessments, on rating scales, or

on specific features of a target behavior. He noted that the vast majority of single-case

studies use observation of overt behaviors. Indeed, the focus on outcome measurements

based on direct observation is considered a hallmark of single-case methodology, in that

treatment impacts on behavioral outcomes often have immediate and recognizable social
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implications for individual participants and the broader populations that they represent

(Hartmann & Wood, 1990; Horner et al., 2005).

Within the domain of overt behavior, I will distinguish further between behaviors

in free-operant versus restricted-operant contexts. Free-operant contexts are defined by a

setting or time-frame in which behaviors are free to occur at any time, without prompting

or restriction by the investigator.7 For instance, an investigator might observe the bullying

behavior of a child during lunch recess (e.g. Ross & Horner, 2009), recording incidents as

they occur over the course of the child’s natural interactions with her peers. In contrast,

restricted-operant contexts are defined by a specific behavioral stimulus, often under the

control of the investigator. For instance, an investigator might observe whether or not a

child complies with verbal requests (e.g. Zuluaga & Normand, 2008); because compliance

is contingent on the investigator’s requests, such observations are in a restricted-operant

context.

A sense of the relative frequency with which studies measure different outcome domains

can be gleaned from the database of single-case studies published in 2008, as assembled by

Shadish and Sullivan (2011). Using the categories described by Kazdin (2011), I classified

each study by the general domains of outcomes employed. As shown in Table 1.1, the

vast majority of studies measured behavioral outcomes, with 56% of studies measuring

behaviors in free-operant contexts and 41% of studies measuring behaviors in restricted-

operant contexts. My development of measurement-comparability models focuses on the

domain of free-operant behavior because it is the most common.

7The behavior-analytic tradition defines free-operant behavior slightly differently, as behavior stimulated
by its consequences, rather than by antecedent prompts or cues (Johnston & Pennypacker, 1993, p. 366).
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Table 1.1. Outcome domains employed in single-case studies

Outcome Studiesa %b

Free-operant behavior 68 56
Restricted-operant behavior 50 41
Psycho-physiological 7 6
Rating scales 10 8
Other 4 3

a N = 122 single-case studies published in 2008, as identified by Shadish and Sullivan (2011).
b Total is greater than 100% because some studies used more than one type of outcome measure.

An array of methods are commonly used to measure overt behavior in free-operant

or restricted-operant contexts. Detailed surveys of measurement methods are available

from several sources (Ayres & Gast, 2010; Barlow & Hersen, 1984; Hartmann & Wood,

1990; Kahng, Ingvarsson, Quigg, Seckinger, & Teichman, 2011; Kazdin, 2011; Primavera,

Allison, & Alfonso, 1996). For a given target behavior, any of these measurement methods

might conceivably be applied; different investigators might choose different methods to

measure the same behavior based on personal preferences or convenience. It will therefore

be important to understand the comparability of these different procedures for measuring

outcomes within each domain.

For measuring behavior in free-operant contexts, there are four major recording meth-

ods. Continuous recording measures the proportion of session time during which a be-

havior is observed. Event counting measures the number of behavioral event occurrences

per session. Momentary time sampling measures whether or not a behavior occurs at

each of a set of fixed moments in time, and is typically typically summarized using a pro-

portion. Finally, interval recording techniques, including partial interval recording and

whole interval recording, involve dividing an observation session into short time intervals,

scoring each interval according to whether or not the behavior occurs for some part of



35

that interval, and summarizing as a proportion of intervals. These methods are described

further in Chapter 5.

For measuring behavior in restricted-operant contexts, there are also four major meth-

ods. The method of fixed-trial proportion of successes (also called discrete trial recording)

involves measuring the proportion of time that a behavior occurs, where the total number

of trials is set by the researcher. For instance, an observer might measure the proportion

of math problems on a test that the subject answered correctly or the proportion of chores

completed without misbehaving. The method ofvariable-trial proportion of successes dif-

fers from fixed-trial methods in that the total number of trials is not under the control of

the researcher, but may depend on other aspects of the subjects behavior. For instance,

an observer might measure the proportion of homework problems correctly completed

during a fixed amount of time, or the proportion of conflict situations in which the sub-

ject acquiesces. Response latency methods involve measuring the time between a stimulus

or cue and the subject’s response. Finally, some behaviors can be broken up into discrete

steps or tasks, which may or may not be contingent on one another. Such behaviors are

sometimes measured using a task check-list, recording which of the tasks are completed

in the setting of interest. For example, investigators might evaluate how well a teacher

implements a teaching technique by using a checklist consisting of the component tasks

involved in correct use of the technique (e.g. Downs, Downs, & Rau, 2008).

Several methodological surveys have been conducted that provide indication of how

frequently different measurement procedures are used, though none of the surveys is com-

prehensive. In one older survey, Kelly (1977) examined research articles published in

the Journal of Applied Behavior Analysis (JABA) between 1968 and 1975. He reported
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that 222 articles (76%) used direct observation of behavior to measure outcomes; of stud-

ies using direct observation, the proportion using event recording, trial scoring, interval

recording, time-sampling, and response duration methods were further described. Mann,

Ten Have, Plunkett, and Meisels (1991) reviewed observational studies (including group

designs) published between 1980 and 1989 in the journal Child Development. They found

that the three most common measurement procedures were continuous recording, inter-

val recording, and (indirect) rating scales; approximately one third of the studies used

an interval recording method. More recently, an informal survey of articles published in

JABA, Behavioral Interventions, or Research in Developmental Disabilities between 2002

and 2005 identified 65 studies that used partial interval recording or momentary time

sampling when measuring behaviors with non-negligible duration (Rapp et al., 2007);

however, the authors did not report the proportion of all articles meeting their criteria,

making their finding difficult to interpret. Finally, Mudford, Taylor, and Martin (2009)

surveyed research articles published in JABA between 1995 and 2005 to assess whether

the investigators used continuous (i.e. continuous duration recording, event-counting) or

discontinuous (momentary time sampling, interval recording) methods to measure free-

operant human behavior. They reported that 55% of the 168 articles identified used

continuous-duration recording or event counting methods, with the remainder using dis-

continuous methods.

A more systematic perspective on the use of different measurement procedures can be

obtained by returning to Shadish and Sullivan’s database of single-case studies published

in 2008 (Shadish & Sullivan, 2011). Table 1.2 displays the results of categorizing each

study that included at least one measure of overt behavior according to the measurement
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Table 1.2. Measurement procedures in single-case studies of overt behavior

Procedure Studiesa %b

Free-operant behavior 68
Continuous duration recording 7 10
Event counting 41 60
Momentary time sampling 5 7
Interval recording 13 19
Other 11 16

Restricted-operant behavior 50
Fixed-trial proportion of successes 28 56
Variable-trial proportion of successes 7 14
Response latency 3 6
Task check-list 7 14
Other 6 12

a Subset single-case studies published in 2008, as identified by Shadish and Sullivan (2011).
b Totals are greater than 100% because some studies used more than one procedure.

procedures employed. In free-operant contexts, event counting is by far the most common

procedure, followed by interval recording methods; in restricted-operant contexts, the

majority of studies used fixed-trial proportion of successes, while all other procedures

were far less common.

1.3. Effect sizes and meta-analysis for single-case research

Single-case research maintains a unique approach to analytic methodology. While

placing a heavy emphasis on systematic collection of quantitative data, the field does not

correspondingly emphasize statistical methods of data analysis. Instead, visual inspection

of graphed outcome data is the dominant method of data analysis (Gast & Spriggs,

2010; Johnston & Pennypacker, 1993; Kazdin, 2011; Smith, 2012).8 In arriving at a

8The prevalence of visual inspection can be attributed in part to the historical roots of single-case research
in behaviorist psychology (Johnston & Pennypacker, 1993). Also, some fields use single-case research
primarily as an aid in immediate diagnosis and decision-making regarding study participants; to that end,
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determination of effectiveness, visual analysts are instructed to assess and weigh the level,

trend, variability, immediacy, and consistency of treatment effects, as well as the extent to

which data points from adjacent phases overlap (Horner et al., 2005). Visual inspection

is a direct inferential technique, in that the analyst’s goal is to determine whether a

specific treatment has an effect on the outcome rather than to provide an estimate of the

magnitude of the effect. Despite its widespread use and acceptance in certain areas of

applied work, serious questions have been raised regarding the validity, reliability, and

sensitivity of visual inspection (Allison & Franklin, 1992; Fisch, 2001; Franklin, Allison,

& Gorman, 1996).

Many statistical procedures have been proposed as substitutes for or supplements to

inferences based on visual inspection and as means for estimating quantitative effect sizes.

Statistical analysis of single-case research is viewed as challenging (or even problematic)

due to the need to account for three aspects of single-case data: first, that single-case

series often display time trends; second, that repeated measurements of the same case

should be treated as serially dependent, rather than independent; and third, that within-

case replications (such as in ABAB designs) should be analyzed rather than discarded.

Much of the quantitative methodology in single-case research has focused on addressing

one or more of these problems, and recent discussions of effect sizes have emphasized the

importance of accounting for all three (Horner et al., 2012; Maggin, Swaminathan, et al.,

2011; Wolery et al., 2010).

applied researchers may consider visual inspection of graphed outcome data to be a sufficient inferential
method, particularly because it is rapid and (seemingly) straight-forward.
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Some proposals for statistical analysis and meta-analysis of single-case research are

premised on the availability of raw data for secondary analysis. Syntheses of between-

groups designs must often be based only on published summary statistics or regression

results, which may be incomplete or sub-optimal for meta-analytic purposes. In contrast,

an advantageous feature of single-case research is that raw data are frequently available.

Many journals that publish SCDs require that the data be published in the form of a

single-case graphs, and reliable methods exist for extracting data from published graphs

(Shadish et al., 2009). Thus, it will often be feasible for a research synthesist to gain access

to raw data from a set of studies and to calculate whatever summary statistics are desired,

or even to perform a meta-analysis based on individual participant data. This approach

has been applied by Van den Noortgate and Onghena (2008), who demonstrated the

increased flexibility of modeling raw data rather than just summary statistics. Unlike in

meta-analysis of between-groups designs, secondary analysis and meta-analysis of single-

case designs could conceivably involve considerably more sophisticated or computationally

complex methods than were used in the primary analysis (e.g., visual inspection) of the

component studies.

Proposed statistical procedures for effect size estimation fall into three broad cate-

gories: non-overlap statistics, parametric regression models of single-cases, and hierarchi-

cal models of collections of cases.9 The remainder of this section briefly describes each of

these.

9Randomization tests (Edgington & Onghena, 2007; Levin & Wampold, 1999) are another distinct ap-
proach to inference from single-case data. Such tests base inference on the distribution induced by an
actual or assumed randomization mechanism, and can provide valid inferences without relying on certain
of the modeling assumptions that are necessary for inference in parametric regression models. To my
knowledge, however, no work to date has demonstrated how such tests could provide effect size metrics
that are suitable for meta-analysis. Therefore, I do not consider them further.
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1.3.1. Non-overlap statistics

A variety of non-overlap statistics have been proposed as quantitative summaries of effect

size for single-case data, with the stated aim of finding statistics that are not sensitive to

serial dependence in the outcome measures. In one of the earliest such proposals, Scruggs

et al. (1987) suggested using the percentage of non-overlapping data (PND); in a simple

AB design, PND is calculated as the percentage of data points in phase B that exceed

the highest (or lowest) data point in phase A. Elaborating on PND, Ma (2006) proposed

instead calculating the percentage of data points in phase B that exceed the median

of points in phase A. Other proposals exist as well, including several motivated by or

connected to robust statistics and non-parametric tests (Parker & Vannest, 2009; Parker,

Vannest, & Brown, 2009; Parker, Vannest, & Davis, 2011; Parker, Vannest, Davis, &

Sauber, 2011). These approaches have come under criticism for several reasons, including

for their lack of correct sampling distributions, for not being sensible metrics for measuring

effect size magnitude, for their lack of design-comparability, and for not being sensitive

to trends or other features of the data (Beretvas & Chung, 2008b; Shadish & Rindskopf,

2007; Shadish et al., 2008; Wolery et al., 2010). Despite such criticisms, non-overlaps

statistics (particularly PND) remain the most commonly used effect size for meta-analysis

of single-case designs (Beretvas & Chung, 2008b; Maggin, O’Keeffe, & Johnson, 2011).

1.3.2. Parametric models for individual cases

Parametric approaches to meta-analysis of single-case data can be classified by whether

each case is analyzed separately or whether a collection of cases is modeled jointly. Most
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proposals falling into the former category are based on piece-wise linear regression mod-

els (for instance Center et al., 1985; Huitema & McKean, 2000). Some proposals also

include simple models for serial dependence within cases, such as lag-1 auto-correlation

(Crosbie, 1993; Maggin, Swaminathan, et al., 2011). Under a given parametric model,

different authors propose different methods of forming effect size estimates. Here I high-

light briefly some of the more prominent approaches; more detailed reviews can be found

in Gorman and Allison (1996), Jenson, Clark, Kircher, and Kristjansson (2007), Shadish

and Rindskopf (2007), and Beretvas and Chung (2008b).

Busk and Serlin (1992) proposed an effect size estimator for data from a single case

that resembles algebraicly the formula for Cohen’s d effect size: the mean difference across

phases, standardized by the pooled, within-phase sample variance. It has been noted that

this effect size is appropriate only if phases do not contain trends and if observations

within phases are independent of one another. Hershberger, Wallace, Green, and Marquis

(1999) proposed a similar statistic, but based on only the last three data points in each

phase.

Center et al. (1985) proposed to use a piece-wise linear regression to account for within-

phase trends and to calculate an effect size based on the F -statistic (or equivalently, the

change in R2) corresponding to a null hypothesis of no change in level or slope due to

treatment. They and others have argued that the F -statistic can then be converted

into a d-type statistic, using the algebraic relationship d = 2
√
F/(n− 2), as given in

Rosenthal (1994). Critiques of and elaborations upon this approach were developed by

Allison and Gorman (1993); Faith, Franklin, Allison, and Gorman (1996); and Beretvas
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and Chung (2008a). Beretvas and Chung (2008a) note that the transformed F -statistic

is not necessarily comparable with d-type effect sizes from a between-subjects design.

More recently, Van den Noortgate and Onghena (2003b) and Van den Noortgate and

Onghena (2008) demonstrated the use of hierarchical linear models for meta-analysis of

SCDs. Though they used a hiearchical model for statistical analysis, they nonetheless

formulated the effect sizes based on the parameters of the individual-case model, taking

an ad-hoc approach of standardizing the raw data from each case by its pooled within-

phase standard deviation. This approach is nearly equivalent to the standardized mean

difference proposed by Busk and Serlin (1992).

Maggin, Swaminathan, et al. (2011) described a novel set of effect size measures and

estimation procedures that can account for differential time trends and auto-correlation

among the observations for an individual case. They proposed to measure the magnitude

of treatment effects by comparing predicted values of the outcome in the presence and

absence of treatment at a fixed point in time, mid-way through the treatment phase, and

to standardize this treatment effect by the within-phase standard deviation of the errors.

The authors claimed that the resulting effect size is “consistent with conventional group

design effect size measures,” (Swaminathan et al., 2010, p. 2), but added the caveat that

this is true in the limited circumstance that all subjects have identical means in baseline.

Finally, there have been several proposals to measure effect sizes using proportionate

changes. Hershberger et al. (1999) defined several different effect size metrics, all involving

predicted outcomes at the end of a treatment phase, where predictions are made based

on linear extrapolation from the baseline phase data or by linear regression of the date

in the treatment phase. One effect size was a proportionate change index, defined as the
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mean difference between predicted outcomes, divided by the predicted outcome based on

extrapolation from baseline (Hershberger et al., 1999). Marquis et al. (2000) employed a

similar effect size, dubbed the “suppression index,” along with several others in a large

meta-analysis of intervention research. Finally, J. M. Campbell (2004) and J. M. Campbell

and Herzinger (2010) discussed a simpler, related effect size, termed the mean baseline

reduction or mean baseline difference and defined as the difference in mean outcomes

between phases, scaled by the mean outcome in the baseline phase. Though all of these

authors note the intuitive appeal of proportionate change measures for applied researchers,

the approach lacks any statistical development in the context of single-case research.

1.3.3. Hierarchical models

Hierarchical linear modeling has been recognized recently as a promising tool for the anal-

ysis of SCDs, particularly for combining results from multiple cases within single studies

(Jenson et al., 2007; Shadish et al., 2008; Van den Noortgate & Onghena, 2003a; Zucker

et al., 1997). In a medical context, Zucker et al. (1997) used an HLM with normal error

distributions and Bayesian estimation methods to analyze a set of individually random-

ized, multiple treatment reversal designs. Their analysis demonstrated that the combined,

hierarchical analysis provides improved estimates of treatment effects for individual pa-

tients. Zucker, Ruthazer, and Schmid (2010) extended the earlier analysis to a larger

set of trials and emphasized the advantages of analyzing raw data rather than summary

statistics from individual cases. Dealing with behavioral data, Van den Noortgate and

Onghena (2003a) used Gaussian-error HLMs to combine data from multiple cases within

a single study. Kyse (2010) applied a hierarchical generalized linear model to single-case
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data, comparing results from a model with binomial errors and overdispersion to results

using other meta-analytic approaches. Kyse, Rindskopf, and Shadish (2011) presented a

tutorial on the application of HGLMs to data from single-case designs. The authors dis-

cussed four examples of increasing complexity, covering one-, two-, and four-phase designs

and normal, Poisson, and binomial error distributions; they emphasized the flexibility of

multilevel models for testing various hypotheses about the data.

While published work demonstrates the great utility of hierarchical modeling of single-

case data, attentions has focused largely on analysis of single studies or collections of stud-

ies with identically measured outcome variables. Consequently, hierarchical analyses of

single-case designs have not attended adequately to the question of how to construct sum-

mary effect sizes, and whether these are design-comparable or measurement-comparable.

In fact, Kyse et al. (2011) argued that a drawback of HGLMs is that they lack effect sizes

that are equivalent to those from between-case designs.

One of the primary strengths of the hierarchical approach is that it allows explicit

modeling of variation both within and across cases. Hedges, Pustejovsky, and Shadish

(2012a, 2012b) relied on this aspect in order to define a d-type effect size and explicitly

demonstrate its design-equivalence. The central idea is that design-comparable effect

sizes can be constructed only in a model that is general enough to encompass both the

single-case design and a between-subjects randomized experiment. Based on one such

model, Hedges and colleagues provided methods for estimating the effect size from data

collected in treatment reversal designs (Hedges et al., 2012b) and multiple baseline designs

(Hedges et al., 2012a). However, the model under which the proposed effect size is defined

relies on strong assumptions, including that (a) the outcome measures are continuous, (b)
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baselines are stable, lacking any trends, (c) the treatment effect can be modeled by a shift

in the mean level of the outcome, and (d) the treatment effect is homogeneous across

cases. In practice, multiple baseline studies frequently exhibit trends in both baseline

and treatment phases. Also, the assumption that treatment effects are constant across

cases may be undesirable, given that one of the expressed goals of many multiple baselines

studies is to study variation in treatment effectiveness (Hersen, 1990). Though use of their

specific estimation procedures may be limited due to reliance on these strong assumptions,

the general approach of Hedges et al. (2012a, 2012b) has much broader application. In

Chapters 2 and 3, I elaborate on their approach, proposing a set of general modeling

criteria for defining design-comparable effect sizes and providing extensions for handling

a variety of specific models, more complicated than those studied in previous work.

1.4. Overview of this thesis

This thesis proposes approaches to defining and estimating operationally comparable

effect sizes for single-case research. I first address design-comparability, extending the

approach proposed by Hedges et al. (2012a, 2012b). In Chapter 2, I propose a general

framework for defining design-comparable effect sizes through the use of a statistical

model that is sufficiently broad so as to encompass both the single-case design at hand

and a hypothetical between-groups design. In Chapter 3, I apply the general framework

to models for continuous, interval-scale outcomes and d-type effect sizes, discuss a variety

of model specifications for multiple baseline and treatment reversal designs, and detail

an estimation strategy. In Chapter 4, I demonstrate my proposed models and estimation

methods in several applications. I turn to issues of measurement-comparability of effect
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sizes in Chapter 5, which focuses on measurement models for free-operant behavioral

outcomes while making simple assumptions about the stability of behavior over time. In

Chapter 6, I extend the proposed effect size models to incorporate more complex features

such as time trends and serial dependence. In the final chapter, I discuss some extensions

and areas for further research, then offer some concluding thoughts.
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CHAPTER 2

A general framework for design-comparability models

Hedges et al. (2012a, 2012b) demonstrated that a design-comparable standardized

mean difference effect size can be obtained from multiple baseline or treatment reversal

designs by specifying a model that is “broad enough to encompass both a between-subjects

experiment and a single-case design with replications across individuals” (Hedges et al.,

2012b, p. 225). This chapter explicates the general logic behind this approach, in which

a design-comparable effect size is understood as one that is directly comparable to an

effect size from a cross-sectional randomized experiment. Abstracting from specific distri-

butional models, I outline a set of criteria for judging whether a model is “broad enough”

and describe how a sufficiently broad model can be used to construct a design-comparable

effect size.

The difficulty in finding a sufficiently general model–one that can encompass both a

cross-sectional experiment and an SCD–arises from the possibility that treatment effects

can vary over the operational dimensions of a study that relate to time. Many aspects of a

study’s operations include some temporal dimension: a study is conducted over a specific

period of calendar time; study participants might be restricted to those at a certain time in

their life-course; treatment procedures are scheduled and executed over time; and outcome

measurement occurs at specific points in time (c.f. Cronbach, 1982). One might theorize

that the effect of a given treatment varies with any of these dimensions; for instance, a

treatment could have a gradual or abrupt effect after it is first introduced, the effect could
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be temporary or permanent, and the effect of sustained intervention could differ from that

of one-time or intermittent intervention (Shadish et al., 2002, Chp. 6).

The treatment effects identified in cross-sectional randomized experiments have a very

simple form: they are contrasts (such as differences or ratios) between averaged values of

an outcome variable when the treatment is present versus when it is absent, where the

average is taken over the units in the experiment. This simplicity stems from temporal

specificity: in a typical cross-sectional experiment, treatment procedures are assumed to

begin at the time of random assignment and outcome measurements are made at the same

time on all units.1 Thus, there is neither the need nor the possibility to model temporal

variation in the treatment effect.

In contrast, single-case designs involve measuring change over time in individual cases.

As a consequence of repeated measurement, it becomes possible to observe and model how

treatment effects evolve over time. Moreover, the timing of treatment administration is

an important aspect in all of the major types of SCDs. For example, multiple baseline

designs introduce a treatment at different points in time across units in order to weaken

history and maturation threats (Kazdin, 2011; Shadish et al., 2002), and treatment re-

versal designs emphasize patterns of treatment that are not homogeneous in time. The

presence of temporal variation means that the analyst will have to be specific about oper-

ational details in order to describe a design-comparable treatment effect size. At the same

time, describing design-comparable effect sizes will require models that invoke stronger

assumptions than necessary just to describe the observed data from individual cases.

1Or if not at the same time, at least according to a schedule that was balanced across treatment groups.
Without such balance, the internal validity of the experiment is open to challenge by threats of history
and maturation (D. T. Campbell, 1957).
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A model needs to meet three criteria in order to be sufficiently general that it can de-

scribe both an SCD and a cross-sectional randomized experiment. First, the model must

adequately describe the observed data from the SCD under analysis, including capturing

the functional form of the outcome process and allowing for possible serial dependence

among repeated observations on the same unit. Second, the model must describe a pop-

ulation broad enough that one could conceivably perform an experiment on it, and must

capture variation between the units of treatment assignment. Third, the model must be

causally interpretable at the level of the unit of treatment assignment. These criteria are

quite broad, in that they can be satisfied by a wide variety of analytic models. Likewise,

the development in this chapter proceeds in broad terms, describing the nature of each

of the assumptions without limiting to any particular model; subsequent chapters will

consider specific models and provide detailed applications. After discussing each of the

criteria, I explain how a model meeting them can be used to construct design-comparable

treatment effects by specifying certain details related to a cross-sectional experiment.

2.1. Adequately describe the observed data

One of the chief advantages of randomized experiments is that–at least in the theoreti-

cal ideal–they yield treatment effect estimates and inferences that are internally valid and

model-free, meaning not contingent on any assumptions regarding functional forms, para-

metric distributions, or independence of observations (Rosenbaum, 2002; Rubin, 1974,

1978). Single-case designs do not share the same advantage; instead, the internal validity

of treatment effect estimates are contingent on having a good model for the process that
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generated the data.2 The first modeling criterion is therefore that the model must ade-

quately describe the observed data, including capturing the functional form of time trends

and allowing for possible serial dependence among repeated observations on the same unit.

As discussed in Section 1.3, models for single-case data often posit that the outcome

process involves deterministic time trends. It is crucial that the functional form of such

trends be correctly specified because, in most single-case designs, treatment effects are

identified by extrapolating baseline trends forward in time (Horner et al., 2012). As a

minimal standard, a model should provide a reasonable fit to the observed data (within

phases) if it is to be the basis for extrapolation. Furthermore, the model should capture

essential features of the measurements, such as range limitations. For example, many

single-case studies use outcomes measured as proportions, which can only range from

zero to one; linear trends in the mean of a process measured by proportions will often be

implausible, particularly when proportions are near the scale extremes.

In addition to adequately describing the deterministic component of the outcome

process, a model must also make assumptions about the stochastic component.3 The

assumption that repeated measurements of an individual may be dependent is one of the

basic tenets of longitudinal data analysis, and an important aspect of what distinguishes

the field of from other areas of statistics (Fitzmaurice, Laird, & Ware, 2011). Particularly

when repeated measurements are closely spaced in time, as in most single case studies,

serial dependence should be considered rather than ruled out a priori. Further, serial

2In this respect, SCDs are like all interrupted time series designs (see Shadish et al., 2002, Chp. 6).
3The classical decomposition of time series data involves not only deterministic trends and stochastic
errors, but also periodic patterns (such as seasonal trends). This final component has seldom been
scrutinized in single-case settings (Beasley, Allison, & Gorman, 1996).
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dependence models that include serial independence as a special case can be used to test

one’s assumptions against data.

In applications to single-case studies, models for serial dependence have been focused

largely on lag-one auto-regressive processes with Gaussian errors or other simple, highly

structured processes (e.g. Crosbie, 1993; J. W. Harrop & Velicer, 1985; Velicer & McDon-

ald, 1984). Some authors have questioned the existence of serial dependence in behavioral

time series data (Huitema, 1985; Huitema & McKean, 1998), while others argue that the

existence of lag-one autocorrelation only scratches the surface of larger questions about

serial dependence in behavioral time series (Matyas & Greenwood, 1996; Velicer, 1994). In

recent discussions of statistical modeling procedures for single-case studies, there appears

to be a growing concensus that serial dependence must be considered (Horner et al., 2012;

Wolery et al., 2010).

2.2. A population on which one could experiment

Much of education research is concerned with populations that are characterized by

hierarchical structure, such as students within classrooms within schools, and interven-

tions on such populations may be implemented at different levels of the hierarchy (Bryk &

Raudenbush, 1988).4 In some instances, interventions can be administered directly to in-

dividuals (i.e., the lowest level units), but this is not always the case. Many experiments

in education use cluster-randomization, in which the experimenter assigns higher-level

units (often called clusters) to treatment or control conditions but measures outcomes on

lower-level units (Bloom, 2005; Bloom, Bos, & Lee, 1999; Mosteller & Boruch, 2002). A

4In what follows, I refer to the levels of the hierarchy as ordered from lowest to highest, with lower-level
units nested within higher-level units.
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cluster-randomized design may be preferred over individual-level randomization due to

logistical constraints on individual assignment, issues of political feasibility, or features of

the intervention that make it impossible to do anything else (Orr, 1999). For instance,

if it is to provide a true test of the program, a novel school-wide reform can only be

implemented by an entire school; it is implausible that some staff members in a school

could faithfully implement such a program but leave their colleagues unaffected.

In order to construct a design-comparable effect size, the analytic model must describe

a population in which a cross-sectional experiment could be performed. Thus, if the

nature of the intervention would necessitate cluster-randomization, the analytic model

must describe multiple clusters. For a given intervention, I posit a minimum natural level

of assignment, by which I mean the lowest level of a hierarchically structured population

to which an intervention could feasibly be assigned (cf. Cronbach, 1982, pp. 92-93).

The second modeling criterion is therefore that the analytic model must describe multiple

units at the minimum natural level of assignment, including both within- and between-

unit variation. This criterion ensures that it is possible to use the model to consider a

hypothetical randomized experiment. If the model describes only a population of lower-

level units within one unit at the minimum natural level of assignment, it will be impossible

to define a design-comparable effect size. In many single-case studies, the minimum

natural level of assignment will be the individual participant (i.e., the single case); in

such studies, the criterion requires a model for multiple participants.

For an example where the minumum level is not the individual, consider a study

conducted by Ross and Horner (2009) to evaluate the effects of a school-wide bullying
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prevention program. The study used a multiple baseline design across six students, in-

cluding two students from each of three separate schools. In order to provide a valid test

of the intervention’s effects, the program was implemented with all staff and students in

each school; without a school-wide implementation, one could not claim to have evaluated

the program as designed. Thus, the minimum natural level of assignment is the school,

and an analytic model for these data must describe variation in a population of multiple

schools. Further, a model describing only the students within these three schools, without

considering variation across schools, cannot produce design-comparable effect sizes.

2.3. Causal interpretability

In order to construct a design-comparable effect size, the analytic model must clearly

describe not just the observed outcome data from the longitudinal study, but also the

outcomes that would be observed under variations in how treatment is assigned. These

are sometimes called potential outcomes (Holland, 1986; Rubin, 2005). Based on the

second criterion, treatment assignment is assumed to take place at the minimum natural

level of assignment, leading to the third and final criterion: the analytic model must

be causally interpretable for units at the minimum natural level of assignment. Different

forms of single-case designs warrant separate consideration here, because different patterns

of treatment assignment are possible under each of them. I discuss the multiple baseline,

treatment reversal, and alternating treatment designs in turn, assuming that the case is

the minimum natural level of assignment. Subsequently, I discuss causally interpretable

models at higher levels of assignment.
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2.3.1. Multiple baseline designs

In a multiple baseline design, each unit receives treatment at a given point in time and

continues in the treatment phase thereafter. It may be that the treatment procedures

take place instantaneously or take time to administer, so long as they unfold according

to a fixed plan. The pattern of treatment assignment for a given unit is specified by the

time at which treatment begins. To fix ideas, suppose that case i (a unit at the minimum

natural level of assignment) is to be measured at times j = 1, ..., n. Ti measurements are

made during a baseline phase (in the absence of treatment), where 0 ≤ Ti ≤ n; the case

then receives treatment, and n− Ti further outcome measurements are made during the

treatment phase. A causally interpretable model entails writing the outcome for case i at

time j as a function of the treatment assignment time for that case, that is, as Yij(Ti).

The treatment phase for case i might begin after any given measurement occasion, so that

Ti takes values from 0, ..., n, where Ti = 0 if the case is assigned to treatment just prior to

the first outcome measurement and Ti = n if the case is not assigned to treatment during

the study period.

Clearly, a causally interpretable model describes many potential outcome values, only

a few of which are observed in a given design. It will often be reasonable to assume

that outcomes do not depend on future treatment assignment times (that is, the outcome

on Sunday should not depend on whether a case will start treatment on the following

Thursday versus on the following Friday). Even with this restriction, a causally inter-

pretable model for case i would describe Yij(Ti) for j = 1, ..., n and Ti = 0, ..., j, a total of

n(n+ 1)/2 unique values. Further assumptions could be made as well. For instance, Hol-

land (1986) describes an assumption of temporal stability, meaning that treatment effects
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depend only on the length of time since the introduction of treatment, rather than the

point at which treatment is introduced. This assumption further restricts the potential

outcomes function so that, for instance,

(2.1) Yij(Ti)− Yij(n) = δi(j−Ti)

for j = 1, ..., n and Ti = 0, ..., j. Assuming that the measurement times are equally spaced,

the temporal stability assumption constrains the potential outcome function to at most

2n unique parameters. Yet more restrictive, the potential outcomes function could be

modeled using linear functions of time, restricting (2.1) so that δi(j−Ti) = δ × (j − Ti). I

consider this and several other simple, causally interpretable case-level models for multiple

baseline data in later chapters.

Using potential outcomes to express causally interpretable models is a novel approach

for analysis of single-case studies, though the approach is increasingly common in a vari-

ety of social science disciplines (S. L. Morgan & Winship, 2007, p. 4). However, there is a

close relationship between potential outcomes models and certain analytic methods that

are commonly used in single-case research, including both visual and statistical meth-

ods. Analysis of single-case designs is concerned with whether a “functional relationship”

exists between the treatment and the outcome variable (Horner et al., 2005). Linear ex-

trapolation from the baseline phase is sometimes employed to facilitate comparison with

treatment phase outcomes (Allison & Gorman, 1993; Kyse, 2010; Shadish et al., 2008;

D. M. White, Rusch, Kazdin, & Hartmann, 1989). Consider a linear model the observed
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data from the baseline phase for case i, as in

(2.2) Yij = αi + βi × j + εij, j = 1, ..., Ti.

The potential outcomes model posits that the trend holds over not only the observed

baseline, but that it would also hold over the entire study, in the absence of treatment:

(2.3) Yij(n) = αi + βi × j + εij, j = 1, ..., n.

The potential outcomes model is simply a method of expressing the implied assumption

behind an extrapolation.

2.3.2. Treatment reversal designs

Whereas multiple baseline designs can be used to study interventions that cannot be

undone once introduced (such as those that could have permanent effects), treatment

reversal designs are appropriate only for studying interventions that can be removed and

re-introduced. In such designs, it will sometimes be necessary (and perhaps also reason-

able) to assume that treatments have only transient effects. Suppose that a treatment

reversal design on a single case i measures an outcome at n equally-spaced times. Per

the experimental design, the treatment is present or absent during each outcome mea-

surement. Let Tij indicate whether treatment is present or absent for case i just prior to

time j, and let T̃ij = (Ti1Ti2 · · ·Tij) denote the history of treatment up to time j.5 Again

assuming that outcomes cannot be affected by future treatment decisions, a completely

general potential outcomes model is described by the function Yij(T̃ij) for T̃ij ∈ {0, 1}j

5This notation is similar to that used by Robins and Hernán (2009).
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and j = 1, ..., n. The outcome at time j may depend on the presence or absence of the

treatment at any point in time up to j. In this most general formulation, there are 2j

potential outcomes at time j, for a total of 2n+1 − 2 potential outcomes over the full set

of measurement times.

For the model to be tractable, the very large number of potential outcomes will need to

be constrained by further assumptions. If the treatment can be considered homogeneous,

so that treatment at time 1 is in some sense the same as treatment at time j, the temporal

stability assumption may be appropriate. Letting 0j denote the sequence T̃ij = (0 · · · 0),

one version of temporal stability is expressed by the restriction

(2.4) Yij (t1 · · · tj)− Yij
(
0j
)

= Yi,j+k
(
0kt1 · · · tj

)
− Yi,j+k

(
0j+k

)
for j = 1, ..., n, k = 1, ..., n− j, and t1, ..., tj ∈ {0, 1}.

Depending on the treatment, other assumptions might be entertained instead of or in

addition to temporal stability. One might assume that the treatment effect is a function

of cumulative exposure, so that

(2.5) Yij(t1 · · · tj)− Yij(u1 · · ·uj) = β

j∑
k=1

(tk − uk).

Alternately, one might maintain an assumption of causal transience (Holland, 1986),

meaning that the treatment effect “wears off” some time after its removal. If treatment

completely wears off after k ∈ {0, ..., n− 1} periods, this assumption might be expressed

as

(2.6) Yij
(
t1 · · · tj, 0k

)
= Yij

(
0j+k

)
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for all j = 1, ..., n−k and t1, ..., tj ∈ {0, 1}. In the most extreme form of causal transience,

potential outcomes at time j depend only on Tij:

(2.7) Yij(T̃ij) = Yij(Tij).

Combining this assumption with temporal stability implies that there is a single, uniform

treatment effect δi and that Yij(T̃ij) = Yij(0
n) + δiTij.

In many treatment reversal designs, rapid introduction and removal of the treatment is

not considered. Thus, an alternative approach to making tractable the most general form

of the potential outcomes model is to restrict its domain, asserting that not all possible

patterns of treatment assignment are of interest. Rather than allowing the domain of

Yij(T̃ij) to be T̃ij ∈ {0, 1}j, one could restrict the domain to include only those patterns

where treatment is in place or absent for a minimum number of periods k, so that the

maximum number of treatment reversals through time j is 1 + bj/kc. For a given number

of treatment reversals r, let

T̃ rij(t0, ..., tr) =


(0t01t10t2 · · · 0tr−11tr) r odd

(0t01t10t2 · · · 1tr−10tr) r even

for t0 ≥ 0, t1, ..., tr > k, and
∑r

p=0 tp = n. The potential outcomes function can then be

restricted to Yij(T̃
r
ij) for T̃ rij, r ∈ {0, ...., (1 + bj/kc)}.

2.3.3. Alternating treatment designs

Alternating treatment designs are very similar to treatment reversal designs in terms of

the general structure of their potential outcomes functions; the distinction is a matter of
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degree. Treatment reversal designs are often limited to a small number of reversals, with

each phase containing multiple data points in which the same treatment is in place. In

comparison, alternating treatment designs use more rapid introduction and removal of a

treatment. It is also somewhat more common for alternating treatment designs to consider

more than two treatment conditions, and for the design to use random assignment of

treatment times. For k distinct treatment conditions, the potential outcomes function can

be written in most general terms as Yij(T̃ij) for T̃ij ∈ {0, ..., k− 1}j. Random assignment

schemes may place restrictions on which treatment sequences are possible, for instance by

ensuring that all k treatment conditions are used an equal number of times or that each

treatment is used once per day (i.e., blocking on day). For example, Himle, Woods, and

Bunaciu (2008) used a randomized alternating treatment design to evaluate the effects

of two different reinforcement schedules relative to a no-reinforcement condition on tic

suppression in four children with Tourettes syndrome. Across twelve successive five-

minute sessions, the three conditions (no reinforcement, differential reinforcement, and

non-contingent reinforcement) were randomized such that each condition occurred four

times per child.

Another occasional feature of alternating treatment designs is that outcome measure-

ments may be clustered together in time. For instance, an experimenter might conduct s

sessions of treatment and outcome measurements within two hours and repeat this pro-

cess daily for n days. Such a structure can be described heirarchically, with session time

jk denoting the kth session on the jth day. For each session, treatment Tijk is admin-

istered and outcome measurement Yijk is measured. Let T̃ij(k) = (Tij1 · · ·Tijk) denote

the history of treatment for case i on day j, up through session k = 1, ..., s, and let
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T̃ijk = (T̃i1(s)T̃i2(s) · · · T̃i(j−1)(s)T̃ij(k)). With such a schedule, and with certain treat-

ments, it might be reasonable to assume that causal transience applies across days but

not across sessions within days, implying that Yijk(T̃ijk) = Yijk(T̃ij(k)). Combining this

assumption with temporal stability implies that

(2.8) Yijk(T̃ij(k))− Yijk(0k) = Yi1k(T̃i1(k))− Yi1k(0k)

for j = 1, ..., n and k = 1, ..., s. The full set of potential outcomes can then be described

by the sn outcomes in the absence of any treatment, Yi11(0), ..., Yisn(0sn) plus 2s+1− s− 2

treatment effect parameters.

For an example of a hierarchically structured alternating treatment design, consider

a study by Horrocks and Higbee (2008) that evaluated the effect of preferred versus non-

preferred auditory reinforcement stimuli on the performance of free-operant tasks by six

adolescents with developmental disabilities. Three five-minute sessions were conducted in

succession each day for between six and eight days; each of three reinforcement stimulus

conditions (high-preference, low-preference, and no-reinforcement) was used in one session

per day, in a “semi-random” order. To describe this design in terms of potential outcomes,

let ni be the number of days on which participant i was studied, and let Tijk ∈ {0, 1, 2}

indicate the stimulus condition used in session k = 1, ..., 3 of day j = 1, ..., ni. Due to the

restriction that each condition occur once per day, the treatment history of case i on day

j is restricted to T̃ij(3) ∈ {(012), (021), (102), (120), (201), (210)}, rather than the more

general Tij(3) ∈ {0, 1, 2}3.

The three designs discussed thus far are the most commonly used in single-case re-

search, but my coverage has been far from exhausitive. Single case researchers create
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novel designs by combining elements from multiple baselines, treatment reversals, and

alternating treatments; often this is done in order to study moderating effects or make

comparisons among more than two treatments. For instance, the study by Horrocks and

Higbee (2008) described above actually combined the alternating treatment design with a

multiple baseline design, in which the reinforcement ratio was varied across days for some

participants. These more complex designs will likely require modeling on a case-by-case

basis; for present purposes, I do not consider them further.

2.3.4. Causally interpretable models at higher levels of assignment

Thus far my discussion of causally interpretable models has focused on those for interven-

tions where the minimum natural level of assignment is the case, that is, where the level

of assignment is the same as the level on which outcomes are (repeatedly) measured. For

other interventions, where the intervention is assigned at the level of a cluster of cases,

the above models can be extended under the assumption that the clusters are intact. By

intact clusters, I mean that the cluster to which each individual case belongs is not af-

fected by treatment assignment. Under this assumption, the potential outcomes for each

individual case become a function of a cluster-level assignment indicator. I illustrate this

below for multiple baseline and treatment reversal designs. For both designs, I use the

following notation: let cluster h contain mh cases; for case i in cluster h, let Yhij denote

the outcome measurement on occasion j = 1, ..., n.

In a multiple baseline design, the treatment assignment pattern in cluster h can

be described by the occasion of the last baseline measurement for cases in the cluster,

Th ∈ {0, ..., n}, where Th = 0 means that the cluster begins treatment prior to the first
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measurement, and Th = n means that the cluster does not receive treatment during the

study. The potential outcomes at time j for case i in cluster h are then described by

Yhij(Th). Restrictions on the potential outcomes model follow just as in the model with

case-level assignment. To see the implications of the cluster-level model, consider again

Ross and Horner (2009), which used a multiple baseline design across six students at three

separate schools, measuring outcomes on each of 60 days. For each school, the treatment

was implemented simultaneously for all students and faculty (including for many students

not actually measured). Thus, the model would describe Yhij(Th) for h = 1, 2, 3, i = 1, 2,

and j = 1, ..., 60, from which it is apparent that the treatment assignment times for the

first two students are the same due to necessity rather than coincidence. The cluster-level

model illustrates that the set of potential assigment patterns is considerably more limited

than a multiple baseline design in which individuals are separately assigned to treatment.

In a treatment reversal design, a model for a cluster-level treatment assignment pattern

has to allow that the treatment may be in effect or not, depending on the measurement

occasion. Let Thj be an indicator variable for whether or not the treatment is in effect in

cluster h and time j; following the case-level model, let T̃hj = (Th1Th2 · · ·Thj) indicate the

history of treatment in cluster h up to time j. The potential outcomes at time j for case i

in cluster h are then described by Yhij(T̃hj), for j = 1, ..., n and i = 1, ...,mh. For example,

consider a study evaluating the effect of using response cards during question-and-answer

sessions on the disruptive behavior of fourth grade students (Lambert, Cartledge, Heward,

& Lo, 2006). The study reported repeated measurements of the level of disruptive behavior

among nine target students in two classrooms. Since the intervention in this case is

a teaching technique, it must be present or absent for all students in a classroom at
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once. Thus, the model in this case would describe Yhij(T̃hj) for T̃hj ∈ {0, 1}j, h = 1, 2,

i = 1, ...,mh, and j = 1, ..., 34.

2.4. Target effect size parameters

A model meeting the three criteria described in this chapter allows one to specify pre-

cisely a design-comparable effect size. To describe this effect size, it is helpful to consider

a hypothetical, cross-sectional experiment, in which treatment assignment begins at a

fixed point in time, a fixed schedule of treatment follows, and outcomes are measured at

a fixed, later point in time. Though this is clearly a stylization of how any actual experi-

ment occurs, it is nonetheless useful in that it makes apparent how a design-comparable

effect size can depend on any or all of these time-related operations. Before I define effect

sizes for multiple baseline, treatment reversal, and alternating treatment designs, I first

review how effect sizes are constructed in cross-sectional experiments.

In a cross-sectional experiment comparing treatment versus control conditions, and

assuming unit-level treatment assignment, a sufficient potential outcomes model consists

of just two quantities: the outcome under control Yi(0) and the outcome under treatment

Yi(1). An individual treatment effect is a comparison between these two potential out-

comes, such as their difference or ratio. However, only one of the potential outcomes can be

observed on an individual unit at a given point in time; this is what Holland (1986) terms

the fundamental problem of causal inference. Consequently, effect sizes for cross-sectional

experiments are limited to parameters of the marginal distributions of the potential out-

comes (rather than parameters of the joint distribution) because only the former are fully
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identified. For instance, the d-type effect size [E(Yi(1))− E(Yi(0))] /
√

Var(Yi(0)) is iden-

tified by a cross-sectional experiment, but E [Yi(1)− Yi(0)] /
√

Var[Yi(1)− Yi(0)] is not;

Pr(Yi(1) < c) − Pr(Yi(0) < c) is identified, but Pr(Yi(1) − Yi(0) < c) is not. Design-

comparable effect sizes are therefore quite limited relative to the set of treatment effect

parameters that may be of theoretical interest; these limitations are all the more relevant

when individual treatment effects are heterogeneous.

I now turn to the construction of design-comparable effect sizes. Imagine a cross-

sectional experiment in which treatment begins immediately following a certain measure-

ment occasion A (the implementation time) and in which outcomes are measured on all

units at a later time B (the follow-up time or end-point). For multiple baseline designs,

these design parameters are all that is needed to describe a design-comparable effect size.

Given times A and B, the causally interpretable model for the multiple baseline design

can be used to describe the treatment effect that would be observed in the hypothetical

experiment: the effect at time B of introducing treatment at time A. In terms of potential

outcomes, the effect size is a contrast between the distribution across cases of YiB(Ti = A)

and that of YiB(Ti = n). For interventions at higher levels of assignment, the effect size

is a contrast between the distribution of YhiB(Th = A) and that of Yhib(Th = n). In

designs other than the multiple baseline, some further operational details must be spec-

ified. For treatment reversal and alternating treatment designs, I assume for purposes

of exposition that the effect of interest is based on a schedule of continuous treatment

between times A and B, meaning that the treatment is not removed once it is introduced.

In terms of potential outcomes, the effect size is a contrast between the distributions of
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YiB

(
T̃iB = 0A1B−A

)
and of YiB

(
T̃iB = 0B

)
; for interventions at higher levels of assign-

ment, the effect size compares the distribution of YhiB

(
T̃hB = 0A1B−A

)
versus that of

YhiB

(
T̃hB = 0B

)
. Later chapters deal in detail with specific effect sizes, all constructed

from parameters of the marginal potential outcomes distributions.

2.4.1. Choosing A and B

The design-comparability model analyzed by Hedges et al. (2012a, 2012b) assumed that

the effect size was stable across measurement occasions, and therefore functionally inde-

pendent of the design parameters A and B. As shall be seen in later chapters, certain

more general models do not share this property; instead, chosen values of A and B will

influence the magnitude of the design-comparable effect size to a greater or lesser extent,

depending on the model specification used. This sensitivity naturally raises the question

of how one should choose these design parameters. I offer several general comments, while

deferring any definitive answer until later, in the context of specific applications.

First, I would argue that the choice of which times A and B to use should be in-

formed by scientific concerns, rather than solely by methodological ones. An investigator

planning an actual cross-sectional randomized experiment would face essentially the same

design choices, and would need to choose implementation and follow-up times that are

both feasible and relevant to extant scientific theory regarding the intervention. The

choice of end-points might also be guided by the conventions of past research in the same

disciplinary context or therapeutic area.

Second, the choice of A and B should be tempered by the extent of extrapolations

from the observed data. Increasing the time between implementation and follow-up times
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will require longer extrapolations, and will in general decrease the credibility of the effect

size estimate. Given that most SCDs consist of relatively short time series, issues of

model identification might be inconsequential if short follow-up times are used, but could

create great ambiguities when longer follow-ups are specified. In fact, such sensitivity

provides one rationale for the study of design-comparability. For a given choice of design

parameters, a design-comparable effect size is useful as a focal parameter for studying the

sensitivity of estimates and inferences to variations in modeling assumptions. By focusing

on the design-comparable effect size, one can limit the scope of causal inference to a

specific parameter, and perhaps even weaken modeling assumptions as a consequence.

Finally, in the context of a meta-analysis, it might be desirable to choose the design

parameters A and B so as make effect size estimates as operationally comparable as

possible. For instance, suppose that a meta-analysis is to include several single-case

studies and one randomized trial. One could choose design parameters for the single-case

studies that mimic the operations of the randomized trial, thus reducing the heterogeneity

of study effects that is due solely to incidental design choices.

2.4.2. Related effect size proposals

The approach described in this chapter bears a certain resemblance to other proposals in

the literature on single-case effect sizes. For example, Hershberger et al. (1999) proposed

measuring effect sizes by comparing the last three observations in the baseline phase to

the last three observations in the treatment phase, using a standardized mean difference.

Swaminathan et al. (2010) proposed comparing the observed outcomes at the mid-point

of the treatment phase to the projected trend from the baseline phase. While the exact
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interpretation of these effect sizes would depend to some extent on the form of the outcome

process being modeled, it can be seen that they are not design-comparable. By defining

the effect size metric relative to the length of treatment phase, these proposals introduce

design-dependence, or heterogeneity among effect sizes due to variation in study design.

Effect sizes so formulated might vary from study to study due only to differences in the

length of the treatment phases employed in each study. In contrast, as I have argued in

this chapter, using fixed implementation and follow-up times (as in a hypothetical cross-

sectional experiment) to define the effect size of interest controls for irrelevant design-

related variation and thus improves the interpretability of averages across and contrasts

between study results.



68

CHAPTER 3

Design-comparable standardized mean differences:

Modeling and estimation

The standardized mean difference, often called Cohen’s d, is the most well-known and

widely used family of effect size measures for summarizing treatment effects. Standard-

ization using some measure of variation is intended to solve a ubiquitous measurement-

comparability problem: that different studies use outcome measurements on different

scales, for which no other means of equating may be available. Standardized mean differ-

ences are therefore distinctly useful for interval-scale, continuous measurements, in which

ratio comparisons are not meaningful. In this chapter, I apply the abstract modeling

criteria outlined Chapter 2 to the specific case of d-type effect sizes. I survey a set of

models for multiple baseline designs and treatment reversal designs under which design-

comparable standardized mean differences can be defined, then propose one method of

estimating those effect sizes.

In Chapter 2, I described three criteria for modeling of single-case designs that, if met,

allow a design-comparable effect size to be defined. For evaluating an intervention that

can be assigned to individual cases, the components of such a model are: 1) a causally

interpretable case-level model, 2) a description of the variation across cases, and 3) an

adequate description of the observed data. Hierarchical models with normal (Gaussian)

errors provide a broad and flexible framework for satisfying these criteria, particularly for
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studies using continuous, interval-scale outcome measurements. As noted in Section 1.3.3,

hierarchical linear models has recently received increased attention as tools for modeling

single-case data. Here, I demonstrate their application for purposes of defining design-

comparable effect sizes, focusing on a few models that are likely leading candidates for

analysis of data from multiple baseline and treatment reversal designs.

As is often the case in statistical matters, there are many possible approaches to es-

timation of hierarchical models, with different rationales and different properties. For

purposes of design-comparable effect size estimation, the foremost concern is finding es-

timators that are approximately unbiased, because any bias will propogate through later

meta-analysis of the estimates. Finding unbiased estimators is particularly challenging

when dealing with studies containing few cases and relatively few observations per case,

as are typical in single case research. Additionally, one would prefer estimation methods

that are accessible, meaning that they can be executed using widely available software,

and extensible, meaning that they can be used to estimate a variety of models, tailored to

the specifics of a study, rather than only a few pre-specified models. Different approaches

to estimation satisfy the criteria of unbiasedness, accessibility, and extensibility to varying

degrees.

Hedges, Pustejovsky, and Shadish (hereafter HPS) proposed a specialized approach

to effect size estimation, assuming a certain model for the data from treatment reversal

designs (Hedges et al., 2012b) or from multiple baseline designs (Hedges et al., 2012a).

For both designs, the approach provides close-to-unbiased estimates of effect sizes while

being fairly insensitive to the method used to estimate nuisance parameters that are not

of direct interest. The estimation methods are designed to be accessible, in that they
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consist only of closed-form algebraic formulas. However, the HPS approach relies on

restrictive assumptions about the model and data under consideration (Models MB1 and

TR1, described further in following sections), making it difficult to generalize for more

complex models.

Shadish et al. (2012) outlined a fully Bayesian approach to estimation of a similar

model (Model MB2), although their analysis did not allow for serial dependence between

outcomes measured on the same case. The authors implemented their method using the

WinBUGS software (Lunn, Thomas, Best, & Spiegelhalter, 2000), which uses Markov

Chain Monte Carlo (MCMC) computational methods. Though this approach appears to

be fully extensible, the frequentist properties of the resulting effect size estimator are not

well understood in this setting. Furthermore, the specialized software needed for MCMC

computations could limit the accessibility of this approach.

In settings other than single-case research, hierarchical linear models are often esti-

mated using likelihood-based methods, which include the well-known and widely applied

methods of full information maximum likelihood (FML) and restricted maximum likeli-

hood (RML) estimation. In FML estimation, parameter estimates are set equal to the

parameter values that maximize the likelihood function for a specified model. RML esti-

mation, proposed by Patterson and Thompson (1971), uses a penalized likelihood function

that often produces better estimates of variance components from small datasets. Chi and

Reinsel (1989), Jennrich and Schluchter (1986), Laird and Ware (1982), and Lindstrom

and Bates (1988) have applied RML estimation in the context of models for longitudinal

repeated measurements. Singer and Willett (2003, Section 4.3.2) and Kreft and De Leeuw
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(1998, Section 5.6) both provide non-technical discussions of RML and related estimation

approaches.

FML and RML estimation have several great advantages. First, these approaches can

be applied even in complex hierarchical models and in designs with missing data or un-

evenly spaced measurement occasions. Furthermore, using statistical techniques that are

so well-developed gives the analyst access to a broad array of other statistical tools that

are useful for model development and interrogation, including likelihood ratio tests and

techniques for estimating individual random effects (see for example Pinheiro & Bates,

2000; Raudenbush & Bryk, 2002). Finally, many software packages provide implemen-

tations of full and restricted maximum likelihood estimation for hierarchical linear mod-

els, including SPSS version 11.0 and following, the nlme package in R (Pinheiro, Bates,

DebRoy, & Sarkar, 2012), the xtmixed (StataCorp, 2011) and gllamm (Rabe-Hesketh,

Skrondal, & Pickles, 2004) commands in Stata, PROC MIXED in SAS (SAS Institute Inc.,

2008), and the stand-alone programs HLM (Raudenbush, Bryk, & Congdon, 2011) and

ASReml (Gilmour, Gogel, Cullis, & Thompson, 2009). West, Welch, and Galecki (2007)

demonstrate the use of many of these programs. Although in the abstract, FML and

RML involve more complex computations than the HPS methods, the wide availability

of software implementations for the latter makes those differences immaterial in terms of

practical accessibility.

Given its advantages, RML estimation would seem a natural starting point for esti-

mation of the hierarchical models on which the design-comparable effect sizes are based.

I focus on RML estimation rather than FML on the assumption that the former criteria

will lead to less-biased estimates of the variance components that are a main component
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of the effect size. More generally, by basing effect size estimation on RML, the method I

describe can be viewed as one step in an integrated statistical analysis of the data from a

single-case study, rather than as a separate and isolated procedure.

The remainder of this chapter is organized as follows. Section 3.1 describes a set of

hierarchical models for multiple baseline designs and examines the form of the design-

comparable standardized mean difference parameter under each model. Section 3.2 pro-

ceeds along the same lines for treatment reversal designs. Section 3.3 reviews RML es-

timation and proposes an effect size estimator that can be applied to any of the models

just described. Section 3.4 presents several simulation studies that examine the operating

characteristics of the proposed effect size estimator for sample sizes typical of single-case

designs. Finally, Section 3.5 concludes by discussing open questions and further extensions

to the models and estimation methods considered in this chapter.

3.1. Models for multiple baseline designs

Suppose that a multiple baseline design measures outcomes at each of n equally-spaced

times, on each of m cases, where the treatment is introduced to case i just after time Ti.

As discussed in Section 2.4, a design-comparable effect size for the multiple baseline design

can be operationally defined by specifying a time-point for treatment introduction A and

a time-point for outcome measurement B. Once these are specified, a design-comparable

d-type effect size is given by

(3.1) δAB =
E[YiB(A)]− E[YiB(n)]√

Var[YiB(n)]
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This parameter represents the difference between the average outcome if treatment is

introduced just after time A and the average outcome if treatment is not introduced (i.e.,

introduced after time n), scaled by the standard deviation of the outcome if treatment

is not introduced, where all outcomes are measured at a fixed time B. Note that this

definition relies on having a causally interpretable model for the data, in order for the

quantities YiB(A) and YiB(n) to be defined.

This section presents a catalog of model specifications for multiple baseline designs,

along with the corresponding effect size parameters. I write the models using a two-level

formulation similar to that used by Singer and Willett (2003), where level one (the case

level) describes a regression model for observations j = 1, ..., n on the ith individual and

level two (the group level) describes how the case-level regression coefficients vary across

cases i = 1, ...,m. As will be seen, the specifications under consideration can all be

written using the same case-level assumptions; only the group-level assumptions change.

For each model, I will re-express the general parameter defined by (3.1) in terms of model

components. As will be seen, in some models the effect size may depend only on B − A,

only on B, or on both A and B.

3.1.1. Case-level assumptions

The third modeling criterion described in Chapter 2 requires a case-level model that is

causally interpretable. I therefore specify a structural model where the outcome Yij is a

function of treatment assignment time Ti, as follows:

(3.2) Yij(Ti) = β0i + β1i1(j > Ti) + β2i(j − C) + β3i ((j − Ti)× 1(j > Ti)) + εij



74

Here and following, 1(j > Ti) is an indicator variable equal to 0 for 1 ≤ j ≤ Ti and

to 1 for Ti < j ≤ n. Equation (3.2) is a piece-wise linear regression model, a very

common specification for analysis of multiple baselines (Center et al., 1985; Gottman,

1981; Huitema, 2011; Huitema & McKean, 2000). In this model, time is taken to be

equivalent to measurement occasion and is centered at the constant C. In the case level

model, the choice of centering time affects only the interpretation of the the intercept,

but it will have larger implications in some of the group-level specifications discussed

subsequently.

To interpret the coefficients, it is helpful to first consider the form of the regression if

case i does not receive treatment, so that Ti = n. The model then reduces to Yij(n) =

β0i+β2i(j−C)+εij, and it can be seen that β0i represents the average level of the outcome

at time j = C in the absence of treatment while β2i represents the linear change in the

outcome per measurement occasion, also in the absence of treatment. For arbitrary Ti,

β1i and β3i describe the effect of the treatment on case i. Specifically, β1i represents the

immediate change in the level of the outcome due to introducing the treatment, while β3i

represents additional change in the outcome per measurement occasion that is due to the

treatment. If the treatment began at time A+ 1, then the individual treatment effect for

case i at time B would be β1i + β3i(B − A). Note that if β3i is assumed to be zero (i.e.,

not included in the regression model), then the individual treatment effect reduces to β1i,

a constant effect not depending on the choice of A or B.

It remains to specify assumptions about the error term εij. Because measurements on

each case are taken over time, the assumption that the errors are independent is usually

considered implausible. In the literature on statistical analysis of single-case designs, the
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most common assumption is that the errors are auto-correlated and follow a stationary,

first-order auto-regressive process. I follow this convention as well, by assuming that the

errors have expectation zero, variance σ2, and first-order autocorrelation φ. The last

assumption implies that Cov(εij, εik) = φ|k−j|σ2. Further, all errors are assumed to be

independent across cases, so Cov(εhj, εik) = 0 if h 6= i. Having described the case-level

assumptions, the remainder of this section examines several group-level specifications that

make different assumptions about variation across individuals.

3.1.2. Group-level assumptions

Model MB1: Varying intercepts, no trends

Hedges et al. (2012a) considered perhaps the simplest possible model for multiple baseline

data, assuming that baseline outcomes are stable (lacking trend) and that the treatment

causes a shift in the level of the outcome that is constant across individuals. Using the

case-level model from (3.2), their model is equivalent to assuming that

(3.3) β0i = γ00 + η0i, β1i = γ10, β2i = 0, β3i = 0,

where η0i is normally distributed with mean zero and variance τ 2
0 . Here, γ00 is the average

level of the outcome across individuals in the absence of treatment, η0i = β0i − γ00 is the

deviation from this average level for case i, and γ10 is the treatment effect, assumed to

be constant across individuals.1 The coefficients for the time trends β2i and the time-by-

treatment interactions β3i are both assumed to be zero.

1In the notation of Hedges et al. (2012a), γ00 = µC , γ10 = µT − µC , η0i = ηi, and τ20 = τ2.
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To find the effect size parameter for Model MB1, substitute the assumptions of (3.3)

into the case-level regression model (3.2) to arrive at the mixed-model specification:

(3.4) Yij(Ti) = γ00 + γ101(j > Ti) + η0i + εij.

From the mixed-model specification, it can be seen that E(YiB(N)) = γ00, E(YiB(A)) =

γ00 + γ10 , Var(YiB(N)) = Var(η0i + εij) = τ 2
0 + σ2, and from Expression (3.1),

(3.5) δAB =
γ10√
τ 2

0 + σ2
.

Because both β2i and β3i are assumed to be zero, the treatment effect does not depend

on the choice of A or B. In Section 3.3, I will describe a method for estimating δAB that

differs from the one proposed in Hedges et al. (2012a).

Model MB2: Varying treatment effects

Model MB1 makes the restrictive assumption that the treatment effect β1i is constant

across cases. This assumption can be relaxed by allowing the treatment effect to vary

across individuals, while retaining the assumptions regarding the stability of baseline and

treatment phases. Such a model was studied by Ferron, Bell, Hess, Rendina-Gobioff, and

Hibbard (2009). The group-level specification becomes:

(3.6) β0i = γ00 + η0i, β1i = γ10 + η1i, β2i = 0, β3i = 0,
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where (η0i, η1i) is multi-variate normally distributed, with mean (0, 0) and covariance

matrix

T =

 τ 2
0 τ10

τ10 τ 2
1

 .
Because the effect size is a linear contrast and is scaled by the standard deviation of the

outcome in the absence of treatment, allowing β1i to vary randomly does not alter the

parameter of interest; instead, its form is the same as the effect size under MB1, as given

in (3.5). Though the parameter is identical, the assumption that the treatment effect is

not constant across individuals does have implications for how the parameter is estimated.

Model MB3: Varying intercepts, fixed trends

Multiple baseline data often exhibit trends during the baseline phase, treatment phase, or

both; Model MB1 might be criticized as overly restrictive for ignoring this possibility. A

slightly less restrictive model would allow for trends in both the baseline and treatment

phase, but assume that those trends are common across individuals. Along with the

assumption that the treatment has a constant effect across cases, the group-level model

becomes:

(3.7) β0i = γ00 + η0i, β1i = γ10, β2i = γ20, β3i = γ30,

where η0i ∼ N(0, τ 2
0 ), as in Model 1. The parameters γ00 and η0i have the same interpre-

tation as in Model MB1, but now γ10 represents the immediate change in the outcome

after introducing treatment, γ20 represents the change in the outcome per measurement
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occasion in the absence of treatment, and γ30 represents additional change in the out-

come per measurement occasion due to introducing treatment. All of γ10, γ20, and γ30 are

assumed to be constant across individuals.

Following the same procedure as before, it can be seen that E(YiB(N)) = γ00 +γ20(B−

C), E(YiB(A)) = γ00+γ10+γ20(B−C)+γ30(B−A) , Var(YiB(N)) = Var(η0i+εij) = τ 2
0 +σ2,

and

(3.8) δAB =
γ10 + γ30(B − A)√

τ 2
0 + σ2

.

Here, the effect size parameter depends on the difference B−A, the length of time between

treatment introduction and outcome measurement. However, if B − A is held constant,

the parameter does not depend on the choice of B alone, because the variance is constant

across measurement occasions, regardless of the pattern of treatment assignments.

Model MB4: Varying trends

In some multiple baseline studies, the assumption in Model MB3 that the baseline slopes

are constant across cases may itself be overly restrictive. To relax this assumption, let

(3.9) β0i = γ00 + η0i, β1i = γ10, β2i = γ20 + η2i, β3i = γ30,

where (η0i, η2i) is multi-variate normally distributed, with mean (0, 0) and covariance

matrix

T =

 τ 2
0 τ20

τ20 τ 2
2

 .
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The mixed specification for Model MB4 is

(3.10) Yij(Ti) = γ00 + γ101(j > Ti) + γ20(j − C)

+ γ30 ((j − Ti)× 1(j > Ti)) + η0i + η2i(j − C) + εij.

As in Model MB3, E(YiB(N)) = γ00 + γ20(B − C) and E(YiB(A)) = γ00 + γ10 + γ20(B −

C) + γ30(B − A). However, the variance now changes over time, with

Var(YiB(N)) = Var(η0i + η2i(B − C) + εij) = τ 2
0 + (B − C)2τ 2

2 + 2(B − C)τ20 + σ2.

It follows that the design-comparable effect size is

(3.11) δAB =
γ10 + γ30(B − A)√

τ 2
0 + (B − C)2τ 2

2 + 2(B − C)τ20 + σ2
.

This parameter depends on the choice of both A and B, rather than just their difference.

A simpler algebraic expression can be obtained by choosing to center at time C = B; in

this case, Var(YiB(N)) = τ 2
0 +σ2 and the effect size parameter reduces to (3.8). However,

even with this simplification, the effect size parameter still depends implicitly on B though

the choice of centering point.

Model MB5: Varying intercepts, varying trends, varying treatment-by-time

interaction

To illustrate how hierarchical models can be tailored to specific contexts, I consider one

further model here, to be applied in the third example of Chapter 4. Model MB5 elab-

orates on MB4 by assuming that the treatment-by-time trend interaction varies across
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cases, while holding fixed the immediate treatment effect (the β1i). The case-level as-

sumptions for this model are identical to those in the previous models, as given in 3.2.

The group-level assumptions are as follows:

(3.12) β0i = γ00 + η0i, β1i = γ10, β2i = γ20 + η2i, β3i = γ30 + η3i,

where (η0i, η2i, η3i) is multi-variate normally distributed, with mean (0, 0, 0) and covariance

matrix

T =


τ 2

0 τ20 τ30

τ20 τ 2
2 τ32

τ30 τ32 τ 2
3

 .
In other words, in the absence of treatment, cases vary in their average levels of the

outcome and in their rates of change; furthermore, the treatment has variable effects,

altering the rate of change by more for some cases and less for others. Finally, note

that the design-comparable effect size is equivalent to that given in (3.11), because MB5

differs from MB4 only in the variability of the treatment effect, rather than in how baseline

variability is described.

3.1.3. Further models for multiple baseline designs

The five models presented are far from an exhaustive list of the possible specifications.

For example, one might assume in MB4 that the time trend is constant across phases,

so that β3i = 0. Alternately, any of the models might be extended through the addition

of polynomial time trends. In principle, one could specify a model in which any or all

of the case-level regression coefficients vary randomly, though in practice the number of
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randomly varying coefficients will need to be tempered by the number of cases m being

modeled. I return to the question of how the number of random efffects relates to the

number of cases in Section 3.4.

3.2. Models for treatment reversal designs

Compared to models for the multiple baseline design, causally interpretable models for

the treatment reversal design need to accomodate a larger number of possible treatment

assignment schedules, in order to allow that treatments can be removed and re-introduced.

As a consequence, the treatment reversal design requires more highly structured models

for individual cases. Suppose that the design measures outcomes at equally-spaced times

j = 1, ..., n, on each of m cases. Recall from Section 2.3.2 that a causally interpretable

model specifies a structural form for the function Yij

(
T̃ij

)
, where Tij indicates whether

treatment is present or absent for case i and time j and T̃ij denotes the treatment history

through time j. This section describes several such models, along with possible group-

level specifications and the corresponding design-comparable effect sizes. I again present

a catalog of model specifications, though the focus is on different case-level assumptions,

rather than only group-level assumptions as with the multiple baseline design.

Given a causally interpretable case-level model and assumptions about how the model

varies across cases, a design-comparable treatment effect can be specified by an imple-

mentation time A and a treatment schedule to be followed until outcome measurement

time B. As discussed in Section 2.4, I will assume that the schedule of primary interest is

one of continuous treatment between times A and B, so that T̃iB = 0A1(B−A), compared

to a schedule of no treatment through time B. A design-comparable d-type effect size is
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then given by

(3.13) δAB =
E
[
YiB

(
0A1(B−A)

)]
− E

[
YiB

(
0B
)]√

Var [YiB (0B)]

3.2.1. Models with transient treatment effects

Hedges et al. (2012b) studied the simplest possible model for the treatment reversal design.

At the individual level, they assumed that baseline outcomes are stable (lacking trend)

and that the treatment causes a shift in the level of the outcome that is entirely transient

(c.f., Equation (2.7) in Section 2.3.2). The case-level model is then:

(3.14) Yij

(
T̃ij

)
= Yij (Tij) = β0i + β1iTij + εij,

where, following conventional assumptions for statistical models of single-case data, the

errors (εi1, ..., εin) are normally distributed with mean zero, variance σ2, and first-order

autocorrelation φ. Models TR1 and TR2 use this case-level model but describe different

assumptions about variation across cases.

Model TR1: Transient, constant treatment effect

Hedges et al. (2012b) assumed that the mean outcomes in the absence of treatment β1i

varied across cases, but that the treatment effect is constant:

(3.15) β0i = γ00 + η0i, β1i = γ10
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where η0i is normally distributed with mean zero and variance τ 2
0 .2 As noted by Hedges

et al. (2012a), Model MB1 for the multiple baseline design can be seen as a special case

of model TR1. The latter model includes a very wide set of possible treatment schedules,

but reduces to the former model if restricted to schedules where the treatment is never

removed once it is introduced. As a result, the effect size parameter for TR1 has the same

form as that for MB1. Noting that E
[
YiB

(
0B
)]

= γ00, E
[
YiB

(
0A1B−A

)]
= γ00 + γ10 ,

and Var
[
YiB

(
0B
)]

= Var(η0i + εij) = τ 2
0 + σ2, it follows from (3.13) that

(3.16) δAB =
γ10√
τ 2

0 + σ2
,

which is identical to (3.5). Also note that, just as when the model is specialized to the

multiple baseline design, the effect size does not depend on the chosen design parameters

A and B. In Section 3.3, I will describe a method for estimating the effect size that differs

from the method described by Hedges et al. (2012b).

Model TR2: Transient, varying treatment effects

The constant treatment effect assumption may be overly restrictive, and can be relaxed

by allowing the treatment effect to vary across cases (just as Model MB2 relaxes MB1).

Retaining the case-level specification of (3.14), the group-level specification becomes

(3.17) β0i = γ00 + η0i, β1i = γ10 + η1i,

2In the notation of Hedges et al. (2012b), γ00 = µC , γ10 = µT − µC , η0i = ηi, and τ20 = τ2.
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where (η0i, η1i) is multi-variate normally distributed, with mean (0, 0) and covariance

matrix

T =

 τ 2
0 τ10

τ10 τ 2
1

 .
As this modification does not affect the variance in the absence of treatment, the effect

size for Model TR2 is identical to that for TR1.

3.2.2. Models with decaying treatment effects

The assumption that treatment effects are entirely transient is a strong one, and is par-

ticularly restrictive because it assumes that the full effect of the treatment is realized

immediately upon introduction. It is useful to entertain models that relax this structural

assumption while retaining a causally interpretable structure. In one such model, treat-

ment impacts are only fully realized after the treatment is in place for a length of time.

The potential outcome for case i at time j depends on the treatment schedule as follows:

(3.18) Yij

(
T̃ij

)
= β0i + β1i(1− ω)

j∑
k=1

ω(j−k)Tik + εij,

for ω ∈ [0, 1) and (εi1, ..., εin) following an auto-regressive process with first-order auto-

correlation φ and variance σ2, as in previous models. This case-level regression is a simple

example of the intervention analysis model described by Box and Tiao (1975).

Equation (3.18) is somewhat more complicated than any of the previous case-level

models due to its non-linearity in the parameter ω. I offer several remarks about inter-

pretation. First, one can view this model as an expression of a weaker form of causal

transience, in which the presence of the treatment at a given time wears off according to
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Figure 3.1. Mean outcome process for Model TR3, with β0i = 0, β1i = 1,
and varying values of ω.

a pattern that does not depend on the presence of treatment at any other time. Specif-

ically, the presence of the treatment at time k leads to an immediate impulse response

of β1i(1 − ω), the magnitude of which decays geometrically over time at a rate of ω per

measurement occasion. These individual responses accumulate if the treatment is present

without interruption over subsequent time-points, eventually reaching an asympote of β1i.

Therefore, β1i represents the long-run or equilibrium effect of sustained intervention, while

β0i retains the interpretation of the mean level of the outcome for case i in the absence

of any intervention.
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Second, note that the decay parameter ω controls the degree of curvature in the

path of the mean outcome over time. At one extreme, ω = 0 implies that Yij

(
T̃ij

)
=

β0i+β1iTij+εij, equivalent to Model TR1, in which the potential outcomes depend only on

the contemporaneous treatment status. At the opposite extreme, as ω increases towards

one, the process takes a longer time to reach equilibrium, and the mean path more closely

resembles a linear trend.3 Figure 3.1 illustrates how the decay rate affects the outcome

process: the mean outcome over time is plotted for an ABAB design in which treatment

is introduced after time 10, removed after time 20, and re-introduced after time 30; the

top panel uses a decay rate of ω = 0.5, while the bottom panel uses a more gradual decay

rate of ω = 0.8.

Third, a geometrically decaying impulse response can be justified both by its relative

simplicity and by its close connection to first-order auto-regression, which is the most

prominent assumption entertained about the error processes in single-case data. Observe

that if ω = φ, so that the impulse decays at the same rate as the correlation among the

errors, then (3.18) reduces to a particularly simple auto-regressive equation:

(3.19) Yij

(
T̃ij

)
= β∗0i + β∗1iTij + φYi,j−1

(
T̃i,j−1

)
+ ε∗ij,

for j = 2, ..., n, where β∗0i = (1 − φ)β0, β∗1i = β1(1 − φ), and ε∗i2, ..., ε
∗
in are independent,

normally distributed errors with mean zero and variance (1− φ2)σ2.

It remains to specify the group-level assumptions for the model. As in Models TR1

and TR2, one might entertain the assumption that the equilibrium treatment effect is

constant or that it varies across cases. Models TR3 and TR4 presents each of these

3In the limit, the model comes to resemble a stochastic counterpart of the cumulative exposure model
given in Equation (2.5).
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assumptions in turn. In each model, the curvature ω is treated as a nuisance parameter

and so assumed to be constant across cases, similar to how the auto-correlation φ has

been treated in this and previous models.

Model TR3: Decaying, constant treatment effect

Assuming that the equilibrium treatment effect is constant across cases, the group-level

specification is

(3.20) β0i = γ00 + η0i, β1i = γ10,

where η0i is normally distributed with mean zero and variance τ 2
0 . As in Models TR1 and

TR2, the mean outcome (across cases) in the absence of treatment is E
[
YiB

(
0B
)]

= γ00,

with variance Var
[
YiB

(
0B
)]

= Var(η0i + εij) = τ 2
0 + σ2. However, unlike in other models

the mean outcome at time B depends on the length of the treatment course:

E
[
YiB

(
0A1B−A

)]
= γ00 + γ10(1− ω)

B∑
k=A+1

ω(B−k) = γ00 + γ10

(
1− ωB−A

)
.

The effect size parameter for TR3 therefore has the form

(3.21) δAB =
γ10

(
1− ωB−A

)√
τ 2

0 + σ2
.

Note that if B−A is sufficiently large–that is, if the treatment schedule of interest involves

sustained intervention–then the multiplicative term involving ω will be close to one and
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the effect size parameter will be close to

(3.22) δA∞ =
γ10√
τ 2

0 + σ2
.

This might be called the “equilibrium” effect size parameter, and is identical to (3.16).

Model TR4: Decaying, varying treatment effect

As with previous models, the constant treatment effect assumption in TR3 may be overly

restrictive, and can be relaxed by allowing the treatment effect to vary across cases. With

the case-level specification of (3.18), the group-level specification becomes

(3.23) β0i = γ00 + η0i, β1i = γ10 + η1i,

where (η0i, η1i) is multi-variate normally distributed, with mean (0, 0) and covariance

matrix

T =

 τ 2
0 τ10

τ10 τ 2
1

 .
Because the term involving the decay parameter in the numerator of the effect size does

not vary across cases, allowing the equilibrium treatment effect to vary across cases does

not change the form of the mean treatment effect across cases. Also, as with previous

models, the modification does not affect the variance in the absence of treatment. All

together, this means that the effect size for Model TR4 is identical to that for TR3, as

given in (3.21).
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3.2.3. A causally ambiguous model

Some proposals for parametric models of treatment reversal designs are not causally in-

terpretable, even if they might be adequate descriptions of observed data. For instance,

consider a piece-wise linear regression model for an ABAB design, as described by Hersh-

berger et al. (1999) or Swaminathan et al. (2010), among others. Suppose that the case is

in baseline phase A1 for measurements j = 1, ..., n1, treatment phase B1 for measurements

j = n1 + 1, ..., n2, return-to-baseline phase A2 for measurements j = n2 + 1, ..., n3, and

treatment re-introduction phase B2 for measurements j = n3 + 1, ..., n. The model can

then be written as

(3.24) Yij = βi0I(j ≤ n2) + βi1j × I(j ≤ n2)

+ βi2Tij × I(j ≤ n2) + βi3Tij × (j − n1)× I(j ≤ n2)

+ βi4I(j > n2) + βi5j × I(j > n2)

+ βi6Tij × I(j > n2) + βi7Tij × (j − n3)× I(j > n2) + εij.

Here, the mean outcome in each phase is described by a linear trend. In (3.24), βi2, βi3

describes the change in level and change in trend from phase A1 to phase B1, while βi6, βi7

describe the same quantities from phase A2 to phase B2. Some authors have used slightly

different parameterizations, such as describing each phase using one term for the level at

the beginning of the phase and another term for the slope during the phase.

While this model may fit the observed data reasonably well, it is in a sense too weak

as a model for the potential outcome process, regardless of how it is parameterized. It is
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inadequate because it does not express unambiguously how the process would change if the

phase lengths were altered or if additional treatment reversals were added. For instance,

consider the outcome at the beginning of phase A2, when j = n2 + 1. The observed

outcome is Yi,n2+1 (0n11n2−n10). What if instead of this pattern of treatment assignment,

the experimenter had assigned the case to continue in baseline for the entire time, so

T̃in = {0n2+1}? Does E [Yij(0
n2+1)] = E [Yij(0

n11n2−n10)]? Or should one assume that the

initial baseline phase would be continued up to time n2 +1, so that Yij = β1 +β5j+ εij for

j = 1, ..., n2 + 1? A model that cannot address this and similar questions is not causally

interpretable.

3.3. Restricted maximum likelihood (RML) estimation

The previous sections have presented a variety of models for single case designs with

continuous, interval-scale outcome measures and demonstrated how to use those models to

identify design-comparable standardized mean difference effect sizes. Most of the models

discussed fall into the general category of hierarchical linear models, the exceptions being

Models TR3 and TR4, which involve one non-linear parameter. This section describes

one method for estimating the hierarchical linear models, focusing specifically on how to

estimate the effect size parameter of interest. I begin by laying out notation that is general

enough to encompass any of the hierarchical linear models described in this chapter. Next,

I review RML estimation, focusing in particular on the estimates generated by most

software packages, and discuss methods for handling software convergence problems that

arise due to estimates on the boundary of the parameter space. I then describe a bias-

corrected effect size estimator, discuss issues related to parameterization of the variance



91

components, and note that a certain re-parameterization leads to simplified calculations.

Finally, I briefly discuss a rough approximation for estimating the non-linear models TR3

and TR4.

3.3.1. Notation and general model

Mixed-effect specifications of the models described in previous sections can be expressed

compactly using matrix notation. Let yi = (yi1, ..., yini)
′ be the (ni × 1) vector of out-

come data from case i, excluding missing observations. Because these data points did

not necessarily occur on subsequent measurement occasions, some notation is needed to

indicate the measurement occasion corresponding to each non-missing observation; thus

let (ji1, ..., jini) denote the measurement occasions of the non-missing observations. Let

Xi be the (ni× p) design matrix corresponding to the terms in the regression model. Let

Zi be an (ni×q) design matrix with one column for each of the regression coefficients that

is allowed to vary at random; Zi will typically consist of a subset of the columns of Xi.

Let γ = (γ00, ..., γ(p−1)0)T be the (p×1) vector of fixed effects and ηi = (η0i, ..., η(q−1)i)
′ be

the (q × 1) vector of random effects for case i. Finally, let Ai be the (ni × ni) correlation

matrix of the individual errors (εi1, ..., εini)
′, with stth cell [A]st = φ|jis−jit|, and let T(q) be

the (q × q) covariance matrix of ηi.

Conditional on the random effects, (yi|ηi) is multivariate normally distributed with

mean Xiγ + Ziηi and covariance matrix σ2Ai. After taking expectations over the distri-

bution of random effects, the unconditional distribution of yi is also multivariate normal,

with mean Xiγ and covariance matrix ZiT
(q)Z′i + σ2Ai. The unconditional model for all
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m cases can therefore be written as

(3.25) y ∼ N(Xγ,V)

where y = (y′1, ...,y
′
m)′, X = (X′1, ...,X

′
m)′, Z = ⊕mi=1Zi, T = Im ⊗ T(q), A = ⊕mi=1Ai,

and V = ZTZ′ + σ2A; here ⊕ creates a block-diagonal matrix out of a sequence of

sub-matrices, ⊗ is the Kronecker product, and Im is an (m × m) identity matrix. Let

N =
∑m

i=1 ni be the total number of non-missing observations, so that y and Xγ are

N × 1 and V has dimension N ×N . As a last point of notation, let θ be an (r× 1) vector

that collects all of the parameters related to the covariance matrices; below, A, T, and

V are to be understood as functions of θ.

With this notation established, any of the effect sizes from the linear models in Sections

3.1 and 3.2 can be expressed as the ratio of a linear combination of the fixed effects to the

square root of a linear combination of the variance parameters. Assuming an appropriate

parameterization of the variance components,

(3.26) δAB =
p′γ√
r′θ

for suitably chosen vectors p and r. For example, in Model MB1, take γ = (γ00, γ10)′ and

θ = (σ2, φ, τ 2
0 )′. Setting p = (0, 1)′ and r = (1, 0, 1)′ makes (3.26) equivalent to (3.5). In

Model MB4, take γ = (γ00, γ10, γ20, γ30)′ and θ = (σ2, φ, τ 2
0 , τ20, τ

2
2 )′. For a given choice of

A, B, and centering point C, setting p = (0, 1, 0, B − A)′ and r = (1, 0, 1, 2[B − C], [B −

C]2)′ makes (3.26) equivalent to (3.11).
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3.3.2. Estimation of fixed effects and variance components

As previously noted, many software packages provide implementations of restricted max-

imum likelihood estimation for hierarchical linear models. All of these software packages

provide RML estimates of both the fixed effects γ and variance component parameters θ,

as well as an approximate covariance matrix for the fixed effects. All of the packages also

provide some form of approximate covariance matrix of the variance components, though

they differ in how this covariance matrix is estimated. I now briefly review how these

parameter estimates and covariances are generated.

RML estimation involves two stages, beginning with variance parameter estimation,

followed by fixed effect estimation. For explanatory purposes, it is helpful to begin with the

second stage, supposing that the variance parameters in θ are all known (or equivalently,

that V is known). In this case, the only unknowns are the fixed effects γ, which can

be estimated efficiently using weighted least squares. Define the weighted least squares

estimate

(3.27) γ̃ =
(
X′V−1X

)−1
X′V−1y

which is multivariate normally distributed with mean γ and covariance matrix

(3.28) Cov(γ̃) =
(
X′V−1X

)−1

if V is known. Of course, in the present problem, the variance parameters must be

estimated. RML estimates of the fixed effects use estimates of the variance parameters

θ̂ to form an estimate V̂ = V̂(θ̂), which is then used in place of V in (3.27) and (3.28).
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Thus the RML fixed effect estimates are

(3.29) γ̂ =
(
X′V̂−1X

)−1

X′V̂−1y

with estimated covariance matrix

(3.30) C(γ̂) =
(
X′V̂−1X

)−1

It is known that C(γ̂) tends to underestimate the true covariance of γ̂ in small samples;

Kenward and Roger (1997, 2009) provide more elaborate covariance estimators intended

for use in small samples.

Expressions (3.29) and (3.30) are based on estimated values of the variance components

that have yet to be discussed. Except in certain special cases and simple models, it is not

possible to obtain closed-form expressions for these estimates; instead, RML estimates of

θ are obtained by maximizing the log of the restricted likelihood corresponding to (3.25)

via iterative numerical methods. As given for instance in Lindstrom and Bates (1988),

the log of the restricted likelihood is

(3.31) − 2lR(θ|y) = log
∣∣X′V−1(θ)X

∣∣+ log |V(θ)|+ y′Q(θ)y,

where Q(θ) = V−1(θ) − V−1(θ)X [X′V−1(θ)X]
−1

X′V−1(θ). Let θ̂ denote the values

that maximize lr(θ|y).

It is possible for the RML estimate of one or more variance components to lie on

the boundary of its parameter space; such boundary estimates are particularly common

when estimates are based on data from only a few independent cases. Depending on the
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software package and the parameterization used to maximize the restricted likelihood,

boundary estimates can lead to algorithmic convergence issues. I discuss methods for

addressing these issues in Section 3.3.3.

Estimates of the sampling variance of θ̂ are needed to calculate a small-sample correc-

tion for the effect size estimator and to estimate the variance of the effect size. Different

software implementations use different methods to estimate Cov(θ̂). This is often done

using the inverse of the observed, expected, or average Fisher Information matrix (see

for instance Gilmour, Thompson, & Cullis, 1995); any of these provides an approximate

estimate of the covariance, valid as sample size grows large. The observed information

matrix has entries

[
IθO
]
st

= −∂
2lR(θ|y)

∂θs∂θt

∣∣∣∣
θ=θ̂

(3.32)

=
1

2
y′Q

(
V̇sQV̇t + V̇tQV̇s − V̈st

)
Qy − 1

2
tr
(
QV̇sQV̇t −QV̈st

)
for s, t = 1, ..., r, where V̇s = ∂V/∂θs|θ=θ̂, V̈st = ∂2V/∂θs∂θt|θ=θ̂, and Q = Q(θ̂).

The expected information matrix is the expected value of IO over the distribution of y

(conditional on θ = θ̂), with entries

(3.33)
[
IθE
]
st

=
1

2
tr
(
QV̇sQV̇t

)
for s, t = 1, ..., r. The average information matrix, used in the program ASReml, is the

arithmetic average of IθO and IθE, where quadratic terms involving second derivatives of V

are approximated by their expectations (Gilmour et al., 2009); this leads to computational
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efficiencies for large matrices. The entries are given by

(3.34)
[
IθA
]
st

=
1

2
y′QV̇sQV̇tQy,

for s, t = 1, ..., r. An estimate of the covariance matrix of θ̂ is given by the inverse of one

of these information matrices; thus, define C(θ̂) = I−1, where I indicates IθO, IθE, or IθA.

In order for I−1 to provide a valid estimate of Cov(θ̂), the model must be parameter-

ized in terms of variances and covariances such as τ 2
0 and τ20, rather than, for instance,

log-standard deviations and correlations. Because some software implementations use al-

ternative parameterizations, it may be necessary to convert the information matrix from

one parameterization to another. Suppose that the software uses a parameterization

ψ = g(θ), where g() is a one-to-one function with inverse h(). Write the Jacobian matrix

of the inverse as

(3.35) ∇ψh =

[
∂hs(ψ)

∂ψt

]
s,t=1,...,r

.

If software reports the inverse of the information matrix for ψ (whether observed, ex-

pected, or average), along with RML estimates ψ̂, the approximate covariance matrix for

θ̂ can be calculated as

(3.36) C(θ̂) = (∇ψh)
[
Iψ
]−1

(∇ψh)′ .

3.3.3. Boundary estimates in RML

An important characteristic of both FML and RML estimation is that they can produce

estimates that lie on a boundary of the parameter space. For example, the variance of the
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random intercepts in Model TR1 may be estimated as 0; or in Model TR2, the estimate of

the covariance τ10 can imply a correlation of exactly one between the random effects η0i and

η1i. For purposes of maximizing the (restricted) likelihood, the estimation algorithm may

use a parameterization that maps each parameter to the real line, in which case boundary

maximums will manifest as convergence problems where the numerical algorithm could

run endlessly without reaching the maximum. Both in practice and in order to execute

realistic simulations, one needs some method for handling these boundary estimates.

Faced with a boundary estimate (such as a variance component estimate of zero), the

applied researcher will in practice take one of several possible courses. One approach

would be to simply accept the boundary estimates. Another approach would be to use

the boundary estimate for purposes of calculating the RML effect size estimator (3.37),

but substitute a subjectively chosen value of the parameter for purposes of evaluating the

degrees of freedom ν. This is approach is similar to one suggested by Longford (2000).

Alternatively, one might re-specify the model with a more constrained parameterization,

such as fixing the correlation between random effects in Model TR2 to a subjectively

chosen value. An even more expedient tactic would be to reduce the number of random

effects in the model, for instance by moving from Model TR2 to TR1, conditional on re-

ceiving an RML estimate of τ 2
1 equal to zero. Finally, if one uses an algorithm constructed

to maintain estimates within the parameter space, one could stop the algorithm after a

given number of iterations, even if it has not converged. This last approach would yield

estimates close to–but not exactly on–a boundary of the parameter space. Though esti-

mates generated by such a strategy would not actually maximize the restricted likelihood

and also have certain conceptual flaws, they are accessible and practical from the point
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of view of the applied researcher. In the interest of evaluating RML estimation as it will

likely be used in practice, this final approach is used in the simulation studies reported

in the following section.

3.3.4. Effect size estimation

An initial estimate of the effect size can be formed by substituting the RML estimates γ̂

and θ̂ in place of the corresponding parameters in (3.26), letting

(3.37) δ̂AB =
p′γ̂√
r′θ̂

.

I will refer to this as the RML estimate. Without further adjustment, the RML estimate

is approximately unbiased if the number of cases m is sufficiently large. However, for

sample sizes typically found in multiple baseline designs, δ̂AB may nonetheless exhibit

substantial bias even if γ̂ is exactly unbiased and θ̂ approximately unbiased.

The bias of δ̂AB is analogous to the small-sample bias of the Cohens d statistic from a

between-subjects experiment, which can be corrected using methods described by Hedges

(1981); the corrected effect size estimate is sometimes referred to as Hedges g. The exact

distribution theory used in Hedges g statistic is not available for the present problem,

due to the presence of nuisance parameters among the variance components. Still, one

can approximate the sampling distribution of δ̂AB by a Student-t distribution, thereby

obtaining an approximate small-sample bias correction and an approximate expression

for the variance of the effect size estimate.

In developing the approximation, I will treat r′θ̂ as an unbiased estimate of r′θ, even

though this is only approximately true as m grows larger. For fairly simple specifications
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such as Model MB1, the magnitude of the bias is small; in general the bias will depend

on the degree of imbalance in the data and the number of random effects in the model.

In another approach to approximation, one could also adjust the RML estimate r′θ̂ using

an approximation to its bias. I provide details regarding this more elaborate approach in

Appendix A. However, based on initial simulation studies reported in Section 3.4, I have

found that such further bias adjustment makes little difference for estimating the effect

size.

I now describe an approximation to the distribution of the effect size estimator. Define

the constant

(3.38) κ =

√
p′C(γ̂)p

r′θ̂
.

From a theorem given in Hedges (2007), it then follows that the distribution of δ̂AB/κ

can be approximated by a non-central t distribution with ν degrees of freedom and non-

centrality parameter δAB/κ, where

(3.39) ν =
2(r′θ̂)2

r′C(θ̂)r
.

It follows further that a bias-corrected effect size estimator is given by

(3.40) gAB = J(ν)× δ̂AB,

where J(x) = 1− 3/(4x− 1), and that gAB has approximate variance

(3.41) Var(gAB) ≈ J(ν)2

[
νκ2

ν − 2
+ δ2

AB

(
ν

ν − 2
− 1

J(ν)2

)]
.
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Substituting gAB for δAB produces an estimate of the variance of gAB.

3.3.5. A reparameterization

A particular re-parameterization of the variance components provides insight into why

the effect size estimate is approximately t-distributed and leads to simplified expressions

for δ̂AB, κ, and ν. Parameterize the variance components by the vector ψ = g(θ), with

first entry ψ1 = r′θ and remaining entries ψ∗ that create a one-to-one mapping from θ; let

h = g−1. With this parameterization, the effect size (3.26) is then simply δAB = p′γ/
√
ψ1

and the covariance matrix of y can be written as V = ψ1W(ψ∗).

Let ψ̂ denote the RML estimate of ψ, Ŵ = W(ψ̂), and

R = Ŵ−1 − Ŵ−1X
[
X′Ŵ−1X

]−1

X′Ŵ−1.

Also define Ẇs = ∂W/∂ψs|ψ=ψ̂ and Ẅst = ∂2W/∂ψs∂ψt|ψ=ψ̂ for s, t = 2, ..., r. The first

derivative of the log restricted likelihood (3.31) with respect to θ is then

∂lR(ψ|y)

∂ψ1

=
1

2ψ2
1

y′Ry − N − p
2ψ1

.

It follows that the RML estimator of ψ1 is

(3.42) ψ̂1 =
y′Ry

N − p
,

from which it is clear that ψ̂1 is a quadratic form in y, conditional on the remaining

parameter vector ψ∗.
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Furthermore, simpler expressions are available for κ and for ν under this parameteri-

zation. Since C(γ̂) = ψ̂1

(
X′Ŵ−1X

)−1

, it follows that κ =

√
p′
(
X′Ŵ−1X

)−1

p. Also,

ν = 2ψ̂2
1/C(ψ̂1), where the denominator of this expression is the diagonal entry of the

inverse information matrix corresponding to ψ1.

So long as C(ψ̂) is calculated using the expected or average information matrix, even

further simplification of ν is possible. Letting kE =
[
tr
(
RẆ2

)
, ..., tr

(
RẆr

)]′
and LE

be a matrix with (s − 1, t − 1)th entry tr
(
RẆsRẆt

)
for s, t = 2, ..., r, the expected

information matrix can be written

IψE =

 N−p
2ψ̂2

1

k′E/(2ψ̂)

kE/(2ψ̂) LE/2

 .
the first diagonal entry of the inverse information matrix is therefore

[
IψE
]−1

1,1
=

2ψ̂2
1

N − p− k′EL−1
E kE

,

by which it follows that ν = N−p−k′EL−1
E kE. The same holds if the average information

matrix is used, replacing kE with kA = [y′RẆ1Ry, ...,y′RẆr−1Ry]′ and LE with the

matrix LA having (s, t)th entry y′RẆsRẆtRy. From either expression, the degrees of

freedom are equal to the total number of observations, minus the number of fixed effects,

minus a penalty term depending on the design matrix X, the correlation matrix W, and

the derivatives of W with respect to ψ∗.

Note that the value of ν obtained from the re-parameterized model is the same as that

from the original model. Recall that ψ = g(θ), so ∂g1(θ)/∂θ = r′. From (3.36), it can be
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seen that

(3.43)
(
Iψ
)−1

= (∇θg)
(
Iθ
)−1

(∇θg)′,

by which it follows that C(ψ̂1) =
[
Iψ
]−1

1,1
= r′

[
Iθ
]−1

r = r′C(θ̂)r.

3.3.6. Estimating non-linear models

My development thus far has been for models that are linear in the parameters. Here

I describe an expedient but imperfect approach for estimating Models TR3 and TR4.

Both of these models involve a single non-linear parameter ω, conditional upon which the

mean specification is linear in β. Therefore, either one can be estimated by maximizing

the profile likelihood in ω, then estimating the remaining parameters conditional on the

profile-maximizing value of ω. Procedurally, this involves the following:

(1) For a fixed value of ω ∈ [0, 1), calculate the covariate Xω
ij = (1−ω)

∑j
k=1 ω

(j−k)Tik

for j = 1, ..., ni and i = 1, ...,m. The case-level model given in (3.18) can then

be written as Yij

(
T̃ij

)
= β0i + β1iX

ω
ij + εij, which is linear in β0i, β1i.

(2) Using the group-level assumptions of TR3 or TR4, estimate the model with

covariateXω via RML, producing parameter estimates θ̂(ω). Note the maximized

profile log-likelihood lp(ω).

(3) Repeat these steps for varying values of ω. Let ω̂ be the value that maximizes

the profile likelihood lp(ω).

(4) Set θ̂ = θ̂(ω̂) and β̂ = β̂(θ̂, ω̂). Use these estimates and the approximate covari-

ance matrices C(β̂) and C(θ̂), which are functions of θ̂ and X ω̂, to calculate the

adjusted RML effect size estimate gAB and its variance.
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(5) It is also advisable to conduct a sensitivity analysis that assesses the impact of

varying values of ω on the estimated effect size.

In this profiling approach, choosing a value of ω is directly analogous to choosing

a model from a set of possible specifications that could involve polynomial terms for

certain covariates. Just as the standard errors of parameter estimates from hierarchical

linear models are conditional upon the model specification, so too the profiling approach

ignores the uncertainty in the estimate of ω for purposes of assessing the uncertainty of

the remaining parameter estimates. The effect size estimate depends on the estimate of

ω directly through the term (1 − ωB−A) in (3.21), or indirectly through the treatment

effect estimate γ̂10 if B − A is large. Thus, ignoring the uncertainty of ω̂ will be more

reasonable when ω̂ is close to zero, so that it has little effect on the uncertainty of the effect

size numerator; it is certainly less defensible when ω is large. In any case, the profiling

approach is intended only as a stop-gap until a more thorough analysis of estimation

procedures for non-linear models can be carried out. I present it because the benefits of

examining a wider class of models for treatment reversal designs would seem to outweigh

the drawbacks of flawed estimation and inference techniques.

3.4. Small-sample performance

The estimation methods that I have proposed involve approximating the distribution

of the RML effect size δ̂AB by a non-central t distribution. The small-sample performance

of the adjusted estimator gAB depends on the quality of this approximation, which may

in turn depend on the particular data-generating model and the design of the study. In
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this section, I report results of several small simulation studies examining the operat-

ing characteristics of the adjusted estimator under varying designs and data-generating

models.

RML estimation methods are applicable in principle to a vast range of models and

designs, but the scope of the simulations here is necessarily much more limited. I address

two main questions. First, HPS proposed effect size estimators for Models MB1 and TR1

and found that they are nearly unbiased even in designs with small numbers of cases and

relatively few measurement occasions; I therefore evaluate the bias and precision of the

adjusted RML estimator under these same models, against the benchmark of the HPS

estimator. Second, this chapter has introduced several models for multiple baseline and

treatment reversal designs to which the HPS estimator is not immediately applicable. I

examine the performance of the adjusted RML estimator in two such models that have

additional random effects: TR2, which has varying treatment effects, and MB4, which

has baseline trends that vary across cases. For each of these models, I focus on the bias

of the effect size estimator and its associated variance estimator.

In all of the simulations described below, I used the lme function from the R package

nlme (Pinheiro et al., 2012) to obtain RML estimates. This function uses a log-Cholesky

parameterization for the random effects covariance matrix, which has an unrestricted

parameter space (Pinheiro & Bates, 1996). I allowed the maximization routine in lme

to run for at most 50 iterations, and accepted the resulting values even if they had not

converged to a maximum. I provide further details regarding convergence when describing

the simulation results.
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3.4.1. Comparison of adjusted RML estimators and HPS estimator

The first simulation study compared the performance of the adjusted RML estimator to

that of the estimator proposed by HPS, using bias and root mean-squared error as the

criteria. For simulating Model MB1, I used a multiple baseline model in which treat-

ment assignment times are spread as evenly as possible across the range of measurement

occasions while maintaining at least 3 measurement occasions within each phase. For

simulating Model TR1, I used a simple AB design with baseline and treatment phases of

equal length, following Hedges et al. (2012b).

Table 3.1 reports the design of the simulation study used in conjunction with Models

MB1 and TR1. The design consists of a 9× 5× 2× 2× 2 factorial and follows the broad

outlines of the simulations reported by HPS, but with fewer levels for certain parameters.

The auto-correlation φ was varied between -0.3 and 0.5 (HPS used -0.9 to 0.9), as this

range seems most plausible in applications to single-case research. The total variance was

fixed to τ 2
0 + σ2 = 1 while the within-case reliability ρ = τ 2

0 /(τ
2
0 + σ2) was varied between

0.0 and 0.8. The number of cases and number of measurement occasions was limited to the

two smallest levels considered by HPS, because the bias of their estimator was negligible

for larger sample sizes. I set the fixed effects equal to γ00 = 0, γ10 = 1, so that the effect

size parameter δAB is equal to one. HPS observed that the bias of their estimator was

proportional to the effect size parameter. On the assumption that the adjusted RML

estimators behave similarly, I interpret the simulated biases as proportions of the effect

size parameter (e.g., bias of less than 2%).

For each combination of parameter levels, I generated 25,000 datasets. I then calcu-

lated three effect size estimates based on each simulated dataset: the estimator described
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Table 3.1. Simulation design for Models MB1 and TR1

Parameter Definition Levels Min. Step Max.

φ Autocorrelation 9 -0.3 0.1 0.5
ρ Within-case reliability 5 0.0 0.2 0.8
m Number of cases 2 3 3 6
n Measurement occasions 2 8 8 16

Design Multiple baseline / AB 2 - - -

in Hedges et al. (2012a), which I refer to as gHPS, the adjusted RML estimator gAB, as

given in (3.40), and a twice-adjusted estimator g∗AB that involves an additional term for

the bias of r′θ, described in Appendix A. For the latter two estimators, I used the ex-

pected information matrix to evaluate ν and the bias-correction constant ξ.4 Since each

of the three estimators was calculated based on the same simulated data, their sampling

distributions are inter-correlated and so differences between the estimators have very low

Monte Carlo error.

Figures 3.2a and 3.2b plot the bias of the three effect size estimators for the AB design

and the multiple baseline design, respectively, across varying levels of the parameters.5

Overall, the biases of the adjusted RML estimators are quite small and comparable to

the bias of the HPS estimator. With the smallest sample size considerd (m = 3, n = 8),

gAB has a slightly larger bias than gHPS when ρ is low, but a comparable bias when ρ is

larger; still, the bias of gAB is never greater than 3% in absolute magnitude. Also with the

smallest sample size considered, the expected value of the twice-adjusted estimator g∗AB

4The automatic output of the lme function does not use the inverse expected information matrix for
estimating the variance of the variance components, but rather uses a numerical approximation to the
Hessian of the log-likelihood. I wrote a separate function to calculate the expected information matrix
from supplied parameter estimates.
5In each figure, the rows of the lattice correspond to different values of the sample size m and n, while
the columns of the lattice correspond to varying values of ρ; the x-axis of each panel corresponds to φ,
and different colors and line-types correspond to each estimator.



107

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

−0.03

−0.02

−0.01

0.00

0.01

0.02

−0.03

−0.02

−0.01

0.00

0.01

0.02

−0.03

−0.02

−0.01

0.00

0.01

0.02

−0.03

−0.02

−0.01

0.00

0.01

0.02

m
=

3
m

=
3

m
=

6
m

=
6

n
=

8
n

=
16

n
=

8
n

=
16

−0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4
φ

B
ia

s

Estimator
gHPS

gAB

gAB
•

(a) AB design

ρ = 0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

−0.03
−0.02
−0.01

0.00
0.01
0.02

−0.03
−0.02
−0.01

0.00
0.01
0.02

−0.03
−0.02
−0.01

0.00
0.01
0.02

−0.03
−0.02
−0.01

0.00
0.01
0.02

m
=

3
m

=
3

m
=

6
m

=
6

n
=

8
n

=
16

n
=

8
n

=
16

−0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4
φ

B
ia

s

Estimator
gHPS

gAB

gAB
•

(b) Multiple Baseline design

Figure 3.2. Bias of effect size estimators for (a) Model MB1 with a multiple
baseline design and (b) Model TR1 with an AB design. Point-wise Monte
Carlo standard error < 0.005.
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Table 3.2. Average root mean-squared error of effect size estimators under
Models MB1 and TR1

Design m n gHPS gAB g∗AB

AB
3

8 0.2607 0.2468 0.2457
16 0.1742 0.1660 0.1657

6
8 0.1051 0.1017 0.1016
16 0.0693 0.0668 0.0668

Multiple baseline
3

8 0.2652 0.2429 0.2417
16 0.1958 0.1742 0.1739

6
8 0.1045 0.0998 0.0997
16 0.0771 0.0700 0.0700

is always slightly less than that of gAB; in general though, the value of the bias-correction

constant ξ is so small that the two estimators are practically indistinguishable. For larger

sample sizes (m = 6), all three estimators have biases of less than 1.2%.

Given that all three estimators have comparable biases, it is reasonable to also compare

their precision. Table 3.2 reports the average root mean squared error of each estimator,

where the average is taken over the levels of the nuisance parameters φ and ρ. On

average and across designs and sample sizes, gAB has slightly better precision than the

HPS estimator and performs practically as well g∗AB. Thus, in the simple models under

consideration, gAB provides a viable alternative to the HPS estimator. Further, the more

computationally intensive estimator g∗AB does not have any advantage over the simpler

estimator gAB, at least for these designs and sample sizes.

In addition to the effect size estimate itself, an estimate of its sampling variance is

also needed for meta-analysis. I assessed the performance of proposed variance estimators

using the relative variance; for an effect size estimator g with associated variance estimator

Vg, the relative variance is defined as the ratio of the expected value of the variance
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Figure 3.3. Relative variances of effect size estimators for Model MB1 with
a multiple baseline design. Point-wise Monte Carlo standard error < 0.015.

estimator E(Vg) to the true variance of the effect size estimator Var(g). Relative variances

close to one mean that the variance estimator is unbiased.

Figure 3.3 plots the relative variance of gAB and gHPS in the multiple baseline design,

and is constructed in the same fashion as Figure 3.2.6 Results for the AB design are very

similar. From the figure, it can be seen that the HPS variance estimator is somewhat

inaccurate for smaller values of the within-case reliability ρ, tending to under-estimate

the true variance for positive values of the autocorrelation φ; this is true even at the

larger sample size considered. In contrast, the variance estimator for gAB provides more

accurate estimates, with bias that depends less strongly on ρ and φ. Together with the

6The estimator g∗AB is omitted because its relative variance is indistinguishable from that of gAB .
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Figure 3.4. Bias of auto-correlation estimators for Model MB1 with a mul-
tiple baseline design and ρ = 0.6. Point-wise Monte Carlo standard error is
less than 0.002.

small biases displayed by gAB, these results suggest that the adjusted RML estimator is a

reasonable alternative to the methods described by HPS for estimating effect sizes based

on Models MB1 and TR1.

Finally, some incidental results from this first simulation study shed further light the

performance of the HPS variance estimation methods. Hedges et al. (2012b) noted that

the poor performance of their proposed variance estimator may be due to the fact that

it depends strongly on the values φ and ρ, which must typically be estimated from the

data. For estimating these nuisance parameters, HPS used moment estimators that have

poor sampling properties when phase lengths are short, regardless of the number of cases
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used.7 In comparison, the RML estimators of the same nuisance parameters are less biased

and more precise. To illustrate this, Figure 3.4 plots the biases of the RML estimator

and the estimator used by HPS as a function of the true parameter φ, specializing the

results to ρ = 0.6 and a multiple baseline design. Both estimators are approximately

unbiased when φ = 0, but the moment estimator of φ has a large, negative bias that

is approximately proportional to the true parameter value. Though the bias of the this

estimator is mitigated by increasing the number of measurement occasions, it remains

constant as the number of cases increases from m = 3 to m = 6. In light of this, I

would speculate that the performance of the variance estimator proposed by HPS might

be improved by using different estimators of the nuisance parameters, such as the RML

estimators.8

3.4.2. Performance of the adjusted RML estimator for Model TR2

The second simulation study examined the operating characteristics of the adjusted RML

estimator under Model TR2. Compared to TR1, Model TR2 has one further random

effect, and thus two additional variance components: the variance of treatment effects τ 2
1

and the covariance of the treatment effects and baseline levels τ10. Due to the number

of between-case variance components, the incidence of non-maximal estimates generated

by the RML fitting algorithm is a concern in this model. The simulation design therefore

7HPS proposed a Yule-Walker estimator of the auto-correlation, pooled across cases and corrected for
bias when φ = 0. For fixed series length n and non-null φ, this estimator is inconsistent even as the
number of cases m increases.
8However, the method used to estimate nuisance parameters also has implications for the small-sample
bias of the HPS effect size estimator. HPS found that their proposed nuisance parameter estimators
produced estimated degrees of freedom that actually led to smaller bias in gHPS than when the degrees
of freedom were calculated based on known values of the nuisance parameters. Such off-setting biases
would not necessarily occur if RML estimators of the nuisance parameters were used.
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Table 3.3. Simulation design for Model TR2

Parameter Definition Levels Min. Step Max.

φ Autocorrelation 5 -0.3 0.2 0.5
ρ Within-case reliability 5 0.0 0.2 0.8
λ1 Ratio of variance components τ 2

1 /τ
2
0 2 0.1 0.4 0.5

m Number of cases 4 3 1 6
n Measurement occasions 2 8 8 16

varied the number of casesm between 3 and 6, as before, but also included the intermediate

values of m = 4 and m = 5 in order to better characterize the relationship between non-

maximal estimates and sample size. Again following Hedges et al. (2012b), I used a simple

AB design even though longer treatment reversal designs are more common in practice.9

The total number of measurement occasions was either n = 8 or n = 16, with baseline

and treatment phases of equal length. Table 3.4 summarizes the design of the second

simulation study, a 5× 5× 2× 4× 2 factorial.10

In the previous simulation study, it was possible to explore the parameter space of

Models MB1 and TR1 fairly thoroughly, but the greater number of parameters prohibits

as comprehensive a simulation for Model TR2. I limited the simulation design in several

ways. First, I parameterized the between-case variance in treatment effects as a propor-

tion of the between-case variation in baseline levels; letting λ1 = τ 2
1 /τ

2
0 , I set λ1 = 0.1

or λ1 = 0.5 to represent moderate and high levels of treatment effect heterogeneity, re-

spectively. Next, I set τ10 = 0 because pre-testing indicated that the correlation between

9For Model TR2, longer treatment reversal designs such as ABABs are simply further replications of
the basic AB pattern, and so do not present any analytic complications. I therefore expect that the
performance of the adjusted RML estimators would be similar in in these longer designs, or perhaps
slightly better due to the longer total series lengths.
10I used just five levels of auto-correlation φ (rather than 9 levels as in the first simulation) in order to
moderate the total number of factor combinations.
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Figure 3.5. Proportion of RML parameter estimates not at maximum for
Model TR2, versus ρ, averaging across levels of φ. Each line represents a
different ratio of variance components λ2. Point-wise Monte Carlo standard
error < 0.002.

random effects had little influence on the bias of the effect size estimates. Finally, I set

γ00 = 0, γ10 = 1, and τ 2
0 +σ2 = 1 so that the true effect size parameter δAB = 1. For each

combination of parameter levels, I generated 20,000 datasets and calculated the adjusted

RML estimator and the associated variance estimator for each dataset.11 As in the previ-

ous study, I used the expected information matrix to evaluate ν. I present results on the

incidence of non-maximal estimates, the bias of the RML effect size estimator, and the

relative variance of the RML estimator.

To begin, Figure 3.5 plots the proportion of iterations in which the fitting algorithm

did not converge, resulting in estimates that were near to but not strictly at the maximum

of the restricted likelihood. The incidence of non-maximal estimates averaged over 50%

11I also calculated g∗AB . I omit these results as they are nearly identical to those for gAB .
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Figure 3.6. Bias of effect size estimators for Model TR2, versus ρ, averaging
across levels of φ and λ1. Point-wise Monte Carlo standard error < 0.007.

in designs with only a small number of cases, and remains sizable even when the m = 6.

The incidence was somewhat lower for designs with more measurement occasions and for

larger between-case variance components (i.e., larger ρ or larger λ1). Taken together, these

results suggest that in designs with only a few cases, RML will often produce boundary

estimates for a model with two random effects.

Next, Figure 3.6 plots the bias of the adjusted effect size estimator gAB for varying

numbers of cases m, measurement occasions n, and within-case reliability ρ. Lacking

other effect size estimators comparable to the HPS estimator for Model TR1, I used the

unadjusted RML estimator δ̂AB as a point of comparison; Figure 3.6 plots its bias as

well. The bias of gAB is surprisingly small, even at the smallest sample sizes considered.

When m = 3 and n = 8, the absolute bias is less than 7% across all combinations of

parameters considered; for m ≥ 5, the bias is always less than 3%. The bias of gAB is also
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Figure 3.7. Relative variance of gAB for Model TR2, versus ρ, averaging
across levels of λ1. Each line represents a different level of autocorrelation
φ. Point-wise Monte Carlo standard error < 0.02.

both smaller and less variable than that of δ̂AB, which increases substantially with ρ. In

general, the adjusted RML estimator appears to have biases small enough to warrant use

in meta-analysis.

Finally, Figure 3.7 displays the relative variance of the adjusted RML estimator ver-

sus the within-case reliability ρ, for varying numbers of cases and measurement occasions;

separate lines are plotted for different levels of φ to illustrate how the relative variance

depends on the autocorrelation. Across levels of φ, ρ, m, and n, the variance approxi-

mation given in (3.41) over-estimates the actual variance of gAB, to a substantial extent

when m = 3 and to a more moderate extent when m is larger. The bias in this estimator

may come from several sources, including from approximating the distribution of δ̂AB by

a t-distribution, from approximating the variance of the RML estimates using the inverse
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expected information matrix, and from using imprecise parameter estimates in calculating

the information matrix. If the variance approximation were used to apportion weights in

the context of a fixed- or random-effects meta-analysis, the weight assigned to the effect

size estimate gAB would tend to be understated, relative to the theoretically most efficient

weight. This would effectively down-weight evidence from single-case designs, particularly

those with very small numbers of cases, in a meta-analysis that included evidence from

multiple types of designs. Though more accurate variance estimates would certainly be

preferable, use of the proposed variance approximation seems conservative and therefore

warranted for meta-analysis.

3.4.3. Performance of the adjusted RML estimator for Model MB4

The third simulation study examined the operating characteristics of the adjusted RML

estimator under Model MB4, which allows for baseline trends that vary across cases as

well as a change in trend due to treatment that is constant across cases. Compared to

MB1, MB4 has two additional parameters in the mean specification (the baseline trend γ20

and the trend-by-treatment interaction γ30) and two additional variance parameters (the

variance of the baseline slopes τ 2
2 and the covariance of the baseline slopes and levels τ20).

Due to the number of between-case variance components, the incidence of non-maximal

estimates generated by the RML fitting algorithm is a concern in this model, as it was

with Model TR2.

Recall that the effect size parameter in Model MB4 depends on the analyst’s choice of

times A and B, which characterize a hypothetical between-case randomized experiment by

the point of treatment introduction and the point of outcome measurement. For purposes
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Table 3.4. Simulation design for Model MB4

Parameter Definition Levels Min. Step Max.

φ Autocorrelation 5 -0.3 0.2 0.5
ρ Within-case reliability 3 0.0 0.2 0.8
λ2 Ratio of variance components τ 2

2 /τ
2
0 2 0.1 0.4 0.5

m Number of cases 4 3 1 6
n Measurement occasions 2 8 8 16

of simulation, I took A = n/2, and B = 3n/4, so that the effect size represents the

change due to treatment after n/4 measurement occasions, probably a reasonably short

time relative to the length of the study. Because Model MB4 includes linear baseline

time trends that vary across cases, the choice of centering point for the time trend affects

the interpretation of the variance components. I centered time at point B = 3n/4, so

that τ 2
0 represents the between-case variation in the level of the outcomes at time B and

τ20 is the covariance between cases’ baseline slopes and outcome levels at time B. With

γ = (γ00, γ10, γ20, γ30)′ and θ = (σ2, φ, τ 2
0 , τ20, τ

2
2 )′, the target effect size parameter is then

defined by (3.26) with p = (0, 1, 0, n/4)′ and r = (1, 0, 1, 0, 0)′.

Table 3.4 summarizes the design of the third simulation study, which parallels that

for Model TR2. To moderate its dimensionality, I again limited the parameter space

in several ways. First, I parameterized the between-case variance in baseline slopes as

a proportion of the between-case variation in baseline levels; letting λ2 = τ 2
2 /τ

2
0 , I set

λ2 = 0.1 or λ2 = 0.5 and used τ20 = 0 throughout. Next, I did not vary the fixed

effects, instead setting the average baseline outcome level γ00 = 0, the (fixed) change in

the level due to treatment γ10 = 1, the average baseline slope γ20 = 0, and the (fixed)

increase in slope due to treatment γ30 = 0. Finally, I set τ 2
0 + σ2 = 1 so that the true

effect size parameter is δAB = 1. For each combination of parameter levels, I generated
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Figure 3.8. Proportion of RML parameter estimates not at maximum for
Model MB4, versus ρ, averaging across levels of φ. Each line represents a
different ratio of variance components λ2. Point-wise Monte Carlo standard
error < 0.002.

20,000 datasets and calculated the adjusted RML estimator for each dataset, using the

expected information matrix to evaluate ν.12 The presentation of results parallels that of

the previous simulation study.

First, Figure 3.8 plots the incidence of estimates that do not maximize the restricted

likelihood due to convergence issues. Non-maximal estimates awere very common, aver-

aging over 50% when m = 3 and remaining quite high even as m increases. Increased

between-case variability ρ reduced the incidence of non-maximal estimates, though the

relative variability of the baseline trends, controlled by λ2, had little effect. Compared to

the results from Model TR2, the incidence in Model MB4 was slightly lower, on average.

Still, non-maximal estimates occurred commonly enough to be of concern, and using a

12As in the previous simulations, I also calculated g∗AB but found it to be nearly identical to gAB .
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across levels of φ and λ2. Point-wise Monte Carlo standard error < 0.008.

different method for handling boundary estimates could have some impact on the bias of

the adjusted effect size estimator, which I now examine.

Figure 3.9 plots the bias under Model MB4 of the adjusted effect size estimator gAB

as well as the unadjusted RML estimator δ̂AB. As with Model TR2, the bias of gAB was

small, even at the smallest sample sizes considered. When m = 3 and n = 8, the absolute

bias was less than 7% across all combinations of parameters considered, though it was

as large as 11% when n = 16. For m ≥ 5, the bias was never more than 3%. Also

as with Model TR2, gAB was substantially less biased than δ̂AB, which had a bias that

increases with ρ. As previously, the bias was small enough that gAB should be considered

as suitable for use in meta-analysis.
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Figure 3.10. Relative variance of gAB for Model TR2, versus ρ, averaging
across levels of λ1. Each line represents a different level of autocorrelation
φ. Point-wise Monte Carlo standard error < 0.02.

Finally, Figure 3.10 displays the relative variance of the adjusted RML estimator, and

is constructed just like Figure 3.7. Unlike in previous models, here the variance approxi-

mation tended to have a downward bias, except for when m = 3 and n = 8. The under-

estimation was more pronounced for longer series length. The variance approximation in

this model depends on a multiple n/4 of the treatment-by-trend interaction γ30, and so

may be particularly sensitive to under-statement of the variance of fixed effects. Other

methods for estimating the fixed effects covariance matrix, such as those proposed by

Kenward and Roger (1997, 2009), could be useful in this instance for obtaining improved

estimates of the effect size variance. Better estimates are needed, as use of the current

variance approximation for determining fixed- or random-effects meta-analytic weights
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will tend to be anti-conservative, assigning too much weight to effect size estimates from

Model MB4.

3.5. Discussion

This chapter has outlined a series of models for data from multiple baseline and treat-

ment reversal designs, illustrated how design-comparable d-type effect sizes can be defined

under those models, described one method for estimating such effect sizes, and evaluated

the small-sample performance of the estimation method using simulations. In this section,

I comment further on each of these topics.

3.5.1. Models

Sections 3.1 and 3.2 presented catalogs of hierarchical models for multiple baseline and

treatment reversal designs, respectively. I have sought to highlight models that will be

useful and interesting for single-case researchers, while also meeting criteria that allow a

model to serve as a basis for defining design-comparable effect sizes. All five models for

the multiple baseline design used a common case-level regression specification, differing

only in whether the case-level regression parameters were allowed to vary across cases,

were assumed to be common across cases, or were fixed to zero. Models for the treatment

reversal design were similarly inter-related, differing mostly in whether the parameters

representing treatment effects were allowed to vary across cases.

The variety of models presented begs the question of how to choose among them. In

Chapter 4, I will demonstrate a tentative model selection strategy, based on a combination

of formal testing and graphical depiction of model predictions. Beyond this though, I
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would speculate that more richly parameterized models will be attractive in the fields

that use single-case designs. Given the ideographic orientation of single-case research,

it seems fitting to assume that cases vary in any and all respects unless evidence can

be presented to the contrary. The alternative–for instance, assuming as a default that

treatment effects are homogeneous across cases–would be an uncomfortable stance for

researchers accustomed to considering and analyzing each case in its own light, separate

and apart from results of other cases even in the same study.13 Recent criticisms of multi-

level modeling approaches for analysis of single-case data have highlighted the disconnect

between the knowledge and experience of researchers in the field versus how the statistical

models are expressed and applied (Parker & Vannest, 2012). These are very valid concerns,

and further work on selection of appropriate models for analysis of single-case data will

need to be tied closely and articulately to accumulated scientific knowledge in the fields

of application.

3.5.2. Design-comparable effect sizes

The models considered in this chapter permit definition of design-comparable standardized

mean differences, and in certain of the models, the operational definition of the target

effect size depends on the time-points A and B that define it. For example, in Model MB4,

the degree to which the effect size is sensitive to chosen values of A and B will depend

on the degree of variability in baseline slopes, which affects the extent of change in total

variance over time, and on the size of the treatment-by-time trend interaction, which

13Of course, the models proposed in this chapter do in fact entail using information from one case to
inform the analysis of another, but in a more tempered fashion: randomly varying parameters are pooled
“partially” rather than completely (Gelman & Hill, 2007). Hierarchical models are therefore a natural
tool for bridging between ideographic and nomothetic perspectives.
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captures the extent to which the average treatment effect changes over time. Though

such arbitrary dependence may strike some as a drawback of the proposed effect size, I

would argue that it is an inherent consequence of design-comparability. Rather than a

problem with the effect size itself, unexpected sensitivity of the effect size may instead

be symptom that one’s broader modeling assumptions need to be re-evaluated relative to

the context of the analysis.

That said, I also acknowledge that design-comparability is not the only or over-riding

desideratum of effect sizes for use in analysis and meta-analysis of single case research.

Other effect sizes, including ones that are not identified in between-subjects designs, may

be as useful or more useful as summaries of treatment effects from single-case studies. If

scientific theory or empirical evidence suggests that a different metric better quantifies

the underlying phenomenon being studied, its lack of design-comparability should not

prevent its consideration.

3.5.3. Estimation and small-sample performance

I have described one method for estimating design-comparable standardized mean dif-

ferences, based on the results of a conventional and widely-used method for estimating

the component parameters of hierarchical linear models. I have focused on restricted

maximum likelihood estimation because it is extensible, in that it can be applied to a

wide range of different models, as well as accessible, in that it can be implemented using

standard software. The simulation studies presented in this chapter provided some ini-

tial evidence that the adjusted RML effect size estimator and its approximate variance

estimator have reasonably small biases, even in samples with very few cases.



124

Findings based on the simulation studies are limited in several ways, the most obvious

being that they have examined only a fairly small set of models and, for the models

with more than a single variance component, only a subset of the full parameter space.

Also, in all three simulations, I evaluated the covariance matrix of the variance component

parameters using an explicit formula for the expected information matrix of the restricted

likelihood. The exact bias of the adjusted RML effect size estimator depends on this

covariance (through the degrees of freedom correction), and thus also on the method

used to evaluate it. Intuitively, the difference between different information matrices (i.e.,

expected versus observed versus average) will probably be minor, though it is unclear

whether use of numerically-evaluated approximations rather than explicit formulas may

lead to greater differences. Software packages differ in how the covariance matrix is

estimated, both in terms of the default used and what alternatives are available. When

presenting the results of RML model estimation and effect size calculations, it would

therefore prudent to also report the software version used to fit the model and the method

used to estimate the covariance matrix of the variance component parameters.14

It is important to emphasize that I have investigated one very specific and circum-

scribed aspect of RML estimation in small samples. That RML estimates appear to be

useful for forming effect size estimates should not lead one to conclude that RML estima-

tion is the best all-around method for estimating hierarchical models on small samples of

independent cases. On the contrary, the simulation studies demonstrated that with small

samples, RML will often lead to boundary estimates of certain variance components even

when the true parameters are very far from the boundary. Other estimation approaches

14However, the exact method used to estimate the covariance matrix can be surprisingly difficult to
determine.
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may have better properties for general inferential purposes. In particular, fully Bayesian

specifications with weakly informative priors (e.g., Gelman, 2006) and related varieties of

penalized likelihood methods (e.g., Chung, Rabe-Hesketh, Gelman, Liu, & Dorie, 2013)

warrant further consideration, especially for studies with few cases relative to the number

of random effects to be estimated.

Several other questions related to estimation methods also need to be investigated.

First and foremost, a more principled approach to estimation of the non-linear models

TR3 and TR4 is needed. Relevant theory exists (e.g., Davidian & Giltinan, 1995); it re-

mains only to apply that theory in the context of the models that I have proposed. A less

pressing but still interesting question is whether the approximate bias correction to the

variance components described in Appendix A could be used to improve the estimation

of the degrees of freedom ν, with consequences for the accuracy of the effect size variance

given in (3.41). I found that the approximate bias of the total variance (that enters the

denominator of the effect size) is so small as to be inconsequential. However, the approx-

imate biases of the component parameters (e.g., σ2 and τ 2
0 in Model MB1) tend to be

larger. It could be that the the degrees of freedom estimate could be improved by evalu-

ating the information matrix using bias-corrected estimates of the variance components,

rather than using the RML estimates as I have done. Unfortunately I see no alternative

route for investigating this hypothesis other than further simulation studies, which would

be computationally quite intensive.

Finally, it is worth reflecting on the differences between the adjusted RML estimator

and the effect size estimator proposed by HPS for Models MB1 and TR1. Based on sim-

ulations, I found that the mean-squared error of the adjusted RML estimator is slightly
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lower than that of the HPS estimator, while both have only small, comparable biases.

However, this small improvement in precision may come at the expense of robustness

to modeling assumptions. I have evaluated these two estimators under a known data-

generating model involving a parametric error distribution and a dependence structure

(e.g., first-order auto-regression for the within-case errors); from a model-building and

model-testing standpoint, these assumptions may be hard to evaluate based on the small

samples typically used in single-case studies. The RML estimator may be more severely

affected by violations of these assumptions because it uses a fully specified likelihood,

whereas the HPS estimator maintains a certain ”robustness” because it uses an exactly

unbiased moment estimator for the variance in the denominator of the effect size. Unfor-

tunately, as of this writing the HPS estimation method is only available for the most basic

models discussed in this chapter. I sketch one possible extension of the HPS approach in

Section 7.1.
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CHAPTER 4

Design-comparable standardized mean differences: Applications

In this short chapter, I present several examples of the models and estimation meth-

ods proposed in Chapter 3. The first example illustrates the calculation of the design-

comparable standardized mean difference estimate based on the results of an RML es-

timation routine. The remaining examples illustrate the process of model fitting and

comparison. Several of the examples were also analyzed by Hedges et al. (2012a, 2012b,

HPS hereafter), using Model MB1 or TR1; my analysis of these studies includes esti-

mates of the same model by RML for comparison with their estimation methods. Unless

otherwise stated, the UnGraph software (Biosoft, 2004; Shadish et al., 2009) was used

to extract the data for each example from graphs presented in the original articles. I

estimated all of the models below using the nlme package in R (Pinheiro et al., 2012).

4.1. Saddler, Behforooz, & Asaro (2008)

Saddler, Behforooz, and Asaro (2008) used a multiple baseline across individuals to

evaluate the effect of a particular instructional technique on the quality of fourth grade

students’ writing. The design included m = 6 fourth grade students as cases and a total of

10 unique measurement occasions, though none of the cases had complete data. Instead,

each case was measured 3 or 4 times in the baseline phase and 3 times in the treatment

phase, producing a total of 41 observations (excluding data from a third maintenance

phase). Writing quality was measured on a seven-point scale, which I treat as a continuous
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Figure 4.1. Data from Saddler et al. (2008): Writing quality over time for
six fourth grade students. Solid vertical lines marks the point of treatment
introduction for each student. Dashed lines represent the empirical Bayes
estimates of each student’s average level of writing quality in each phase,
based on Model MB1.

measure. This last assumption is certainly tenuous, particularly because one students

baseline scores were often at the lower extreme of the scale. Figure 4.1 plots the data

from the study as well as the empirical Bayes estimates from Model MB1.1

My analysis assumes that there are no time trends and that the treatment effect con-

sists of a shift in the mean outcome that is constant across cases, as in Model MB1.

1For details on empirical Bayes estimates, see Pinheiro and Bates (2000) or Raudenbush and Bryk (2002).
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Table 4.1. Model MB1 estimates for Saddler et al. (2008) data

HPS RML

Parameter Estimate (s.e.) Estimate (s.e.)

Variance components

Autocorrelation (φ̂) 0.010 0.382 (0.235)
Within-case var. (σ̂2) 0.349 0.443 (0.166)
Between-case var. (τ̂ 2

0 ) 0.603 0.438 (0.366)
Total var (τ̂ 2

0 + σ̂2) 0.952 0.882 (0.366)
Fixed effects

Intercept (γ̂00) 2.437 (0.319)
Treatment (γ̂10) 2.097 (0.196) 2.181 (0.234)

Effect size

Unadjusted (δ̂AB) 2.149 2.323
Adjusted (gAB) 1.963 (0.578) 2.169 (0.565)
Degrees of freedom (ν) 8.918 11.603
Constant (κ) 0.201 0.249

Table 4.1 reports RML estimates of the fixed effects, variance components, and the ef-

fect size, along with associated standard errors. For comparison, Table 4.1 also reports

corresponding HPS estimates from Hedges et al. (2012a).

RML estimates of the autocorrelation, within-case variance, and between-case variance

are generated by the software. The corresponding standard errors are based on the inverse

expected information matrix.2 The estimate of the total variance is obtained directly by

summing estimates of its components, while its standard error is obtained by summing

the approximate covariance matrix of its components. Based on the variance component

estimates, the fixed effects estimates and corresponding standard errors are generated by

the software according to (3.29) and (3.30), respectively. The remaining estimates are

calculated according to the formulas given in Section 3.3.4. From expression (3.37), I

2I wrote a function to calculate the expected information matrix from supplied parameter estimates,
rather than relying on the numerical approximation generated by the software.
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find the unadjusted effect size δ̂AB = γ̂10/
√
τ̂ 2

0 + σ̂2 = 2.181/
√

0.882 = 2.323 standard

deviation (s.d.) units. Using expression (3.38), I calculate κ =
√

Var(γ̂10)/
√
τ̂ 2

0 + σ̂2 =

0.234/
√

0.882 = 0.249; from (3.39), I calculate

ν =
2 (τ̂ 2

0 + σ̂2)
2

Var (τ̂ 2
0 + σ̂2)

=
2× 0.8822

0.3462
= 11.603.

Based on the calculated values of ν and δ̂AB, I find the adjusted effect size estimate to be

gAB = J(11.603)× 2.323 = 2.169 s.d. Based on ν, κ, and gAB, I use expression (3.41) to

calculate the approximate variance of gAB:

V (gAB) = J(11.603)2

[
11.603× 0.2492

11.603− 2
+ 2.1692

(
11.603

11.603− 2
− 1

J(11.603)2

)]
= 0.319,

which corresponds to a standard error of 0.565 s.d. The adjusted effect size estimate

describes an average treatment effect that is in the same metric as the standardized

mean difference from a between-subjects study. Since it is design-comparable, gAB can

be synthesized along with effect sizes from other studies, including those from between-

subjects designs and other multiple baseline designs.

The estimate is based on the same statistical model as used in Hedges et al. (2012a);

only the estimation method differs. Overall, the RML estimate of the effect size is fairly

similar to the HPS estimate: the point estimate is about 10% larger, while the standard

error is nearly identical. The RML estimates of the nuisance parameters differ more sub-

stantially from the HPS estimates. The RML estimated autocorrelation is substantially

higher than the HPS estimate, but the latter is based on a moment estimator that is

known to be biased towards zero and that does not perform well when data are missing.
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The ratio of the between-case variance to the total variance is somewhat lower when based

on RML (ρ = 0.497) than when based on the HPS method (ρ = 0.633). In combination

with the estimated autocorrelation, this leads to slightly larger degrees of freedom.

4.2. Laski, Charlop, & Schreibman (1988)

Laski, Charlop, and Schreibman (1988) used a multiple baseline across individuals to

evaluate the effect of a training program for parents on the speech production of their

autistic children. The design included m = 8 children between the ages of 8 and 10

years.3 Cases were measured between 4 and 11 times in the baseline phase and between

7 and 11 times in the treatment phase, with a maximum of 20 consecutive measurement

occasions in all. Speech production was measured using a partial interval recording tech-

nique, calculated as 100% times the number of 10-second intervals during which the child

verbalized, divided by 60 intervals per session. Figure 4.2 displays a plot of the data from

each case.

My initial analysis assumes that there are no time trends and that the treatment

effect consists of a shift in the mean outcome that is constant across cases, as in Model

MB1. Table 4.2 reports RML estimates of the fixed effects, variance components, and the

effect size, along with associated standard errors. For comparison, Table 4.2 also reports

corresponding HPS estimates from Hedges et al. (2012a).

RML estimates of the autocorrelation, within-case variance, and between-case variance

are generated by the software, as described in the previous example. The remaining esti-

mates are calculated according to the formulas given in Section 3.3.4, again as described

3Child 3 was measured separately with each parent, but for simplicity I include only the measurements
taken with his mother.
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Figure 4.2. Data from Laski et al. (1988): Percentage of intervals with
vocalization by session. Solid vertical lines mark the point of treatment
introduction for each child. Horizontal lines represent the empirical Bayes
estimates of each student’s average percentage of intervals with vocalization
in each phase, based on Model MB1 (dashed lines) or MB2 (solid lines).

in the previous example. Based on the RML estimate of Model MB1, the treatment in-

creased the percentage of intervals during which children vocalized by an average of 30.7

percentage points, very close to the HPS estimate of 31.8 percentage points. The RML

estimate of the total outcome variance (including both between- and within-case variation

in the absence of treatment) is 439 squared percentage points, somewhat smaller than the
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Table 4.2. Model estimates for Laski et al. (1988) data

Model MB1 Model MB2

HPS RML RML
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Variance components

Autocorrelation (φ̂) 0.017 0.253 (0.100) 0.023 (0.107)
Within-case var. (σ̂2) 142.555 192.771 (28.266) 142.590 (19.571)
Between-case var. (τ̂20 ) 323.261 245.950 (142.179) 475.057 (265.658)
Case-treatment cov. (τ̂10) -250.853 (160.840)
Treatment var. (τ̂21 ) 175.326 (115.013)
Total var. (τ̂20 + σ̂2) 465.816 438.721 (144.047) 617.647 (266.095)

Fixed effects
Intercept (γ̂00) 39.076 (5.990) 38.452 (7.881)
Treatment (γ̂10) 31.822 (2.212) 30.684 (3.000) 31.592 (5.178)

Effect size

Unadjusted (δ̂AB) 1.474 1.465 1.271
Adjusted (gAB) 1.388 (0.317) 1.405 (0.286) 1.181 (0.358)
degrees of freedom (ν) 13.100 18.552 10.776
Constant (κ) 0.102 0.143 0.208

Log-likelihood -519.1 -511.0
Akaike Info. Criterion 1048.3 1036.0

HPS estimate of 466 squared percentage points. Scaling the treatment effect estimates by

the corresponding total variance estimates produces unadjusted effect size estimates that

differ by less than 1%. The difference between the adjusted effect size estimates is only

slightly larger, due to the larger degrees of freedom in RML. As in the previous example,

the RML estimate of the autocorrelation is significantly larger than the HPS estimate,

while the ratio of between-case variance to total variance is smaller.

The extensibility of RML estimation makes it possible to examine other models for

these data as well. The final column of Table 4.2 reports the results of fitting Model MB2,

which allows treatment effects to vary across cases. The RML estimate of the variance

in the treatment effect is 175 squared percentage points, suggesting that the effect of the
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training program is not homogeneous across cases. More formally, a likelihood ratio test

can be used to compare the fit of MB1 against MB2 (see for instance Pinheiro & Bates,

2000). I applied such a test for the hypothesis that τ 2
1 = τ10 = 0. Compared to an

equal mixture of χ2
1 and χ2

2 distributions, the likelihood ratio statistic of 16.3 is clearly

significant (p < 0.001), leading me to prefer the more general Model MB2.4

Allowing the treatment effects to vary randomly has little effect on the estimates

of the average treatment effect across cases. However, the estimates of the variance

components change substantially, affecting the denominator of the unadjusted effect size

and the degrees of freedom used to adjust it. The total baseline variance is 41% larger

in MB2 than in MB1, leading an adjusted effect size estimate that is 16% smaller. The

difference between the two models is due to a difference in between-case variance across

phases not captured by the assumptions of MB1. The between-case variation in the

outcome appears to be substantially larger in the baseline phase than in the treatment

phase, but the constant treatment effect in MB1 constrains the between-case variance to

be constant across phases. Since the between-case variance is estimated by pooling across

both phases, MB1 leads to a smaller estimate than one based on the baseline phase alone.

MB2 allows the between-case variance to change during the treatment phase. In the

hypothetical between-subjects experiment, this change would be observed as a difference

in variances between treatment and control groups. The expected variance of the control

group would be Var(YiB(n)) = τ 2
0 + σ2, with RML estimate 617. The expected variance

4On reference distributions for likelihood ratio statistics involving variance component restrictions, see
Stram and Lee (1994).
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of the treatment group would be

Var(YiB(A)) = Var(η0i + η1i + εij) = τ 2
0 + τ 2

1 + 2τ10 + σ2,

with RML estimate 219, less than half as large. Thus, the treatment not only raised the

average level of speech production, but also dampened the variation across cases around

that level.

4.3. Schutte, Malouff, & Brown (2008)

The third example illustrates Models MB4 and MB5, which include random trends in

the baseline phase. Schutte, Malouff, and Brown (2008) evaluated the effect of an emotion-

focused therapy program for adults with prolonged fatigue using a multiple baseline across

individuals.5 The design included 13 adults who met clinical criteria for prolonged fatigue.

Cases were measured weekly for 2, 5, or 8 weeks in the baseline phase and between 1 and 7

times in the treatment phase, with a maximum of 15 consecutive measurements in all. For

each case and measurement occasion, fatigue severity was measured using a self-reported

scale that ranged from 1 to 63. I exclude from my analysis data for participant 4 because

nearly all of these measurements are at the upper extreme of the scale. Data for the

remaining m = 12 participants are plotted in Figure 4.3.

Visual inspection and preliminary analysis suggested that it would be necessary to in-

clude time trends in any model for these data. In all of the following models, I use the full,

piece-wise linear regression specification from (3.2) that alloweds non-zero time trends;

the models differ only in whether the case-level regression coefficients are assumed to be

5Data for this example were extracted from a table in the original article.
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Figure 4.3. Data from Schutte et al. (2008): Fatigue severity over time
for adults with prolonged fatigue. The vertical line marks the point of
treatment introduction.

constant across individuals or are allowed to vary. In the models under consideration,

the effect size parameter depends on the choice of time-points A and B for describing

the hypothetical between-subjects design. I use A = 2, meaning that in a hypothetical
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Table 4.3. Model estimates for Schutte et al. (2008) data

Model MB3 Model MB4 Model MB5
RML RML RML

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Variance components

Autocorrelation (φ̂) 0.809 (0.023) 0.399 (0.093) 0.240 (0.111)
Within-case var. (σ̂2) 99.004 (6.199) 29.394 (4.161) 22.540 (3.353)
Between-case var. (τ̂20 ) 14.766 (27.157) 95.713 (46.793) 38.301 (33.000)
Case-trend cov. (τ̂20) 11.209 (6.359) 0.384 (3.402)
Trend var. (τ̂22 ) 1.994 (1.068) 0.147 (0.542)
Case-trend×trt. cov. (τ̂30) 1.741 (7.417)
Trend-trend×trt. cov. (τ̂32) 0.666 (0.962)
Trend×trt. var. (τ̂23 ) 3.009 (2.700)
Total var. (τ̂20 + σ̂2) 113.770 (27.140) 125.107 (46.756) 60.841 (32.745)

Fixed effects
Intercept (γ̂00) 52.932 (4.422) 50.292 (4.074) 50.526 (2.822)
Treatment (γ̂10) 0.489 (0.622) 0.203 (0.616) 0.219 (0.364)
Trend (γ̂20) -1.373 (1.972) -0.542 (1.752) 0.027 (1.600)
Trend × Trt. (γ̂30) -1.896 (0.938) -1.632 (0.656) -1.671 (0.741)
Trt. effect after 7 weeks (p′γ̂) -14.646 (6.340) -11.966 (4.609) -11.672 (5.184)

Effect size

Unadjusted (δ̂AB) -1.373 -1.070 -1.496
Adjusted (gAB) -1.344 (0.621) -1.013 (0.469) -1.328 (0.825)
degrees of freedom (ν) 35.145 14.320 6.904
Constant (κ) 0.594 0.412 0.665

Log-likelihood -435.1 -429.0 -424.5
Akaike Info. Criterion 884.2 876.0 873.0

between-subjects experiment, the treatment would be introduced after the second mea-

surement occasion. I also use B = 9, meaning that the effect size parameter measures the

effect of B −A = 7 weeks of treatment, the maximum length observed in the data. Note

that for some cases, estimating the effect of seven weeks of treatment involves considerable

extrapolation past the observed treatment data. To simplify the calculations, I center the

weekly trend at C = 9 weeks, so that the case-level intercepts correspond to the average

level of the outcome after 9 weeks, in the absence of treatment.
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I examine three different models for these multiple baseline data. An initial model

assumes that the baseline time trends, the initial treatment effects, and the treatment-

by-trend interaction are all constant across cases, but allows the baseline intercept (the

average level of fatigue at week 9) to vary across cases. These assumptions correspond

to Model MB3. Table 4.3 reports RML estimates of the variance components, the fixed

effects, and the effect size for this and following models. Also, Figure 4.4 plots predicted

trends in the baseline and treatment phases for each case, generated using the empirical

Bayes estimates of the random effects. Based on these trend lines and on formal compar-

isons to the other models under consideration, it is apparent that MB3 provides a poor

fit; the assumption that baseline and treatment trends are constant across cases does not

adequately describe these data. Consequently, I do not interpret the model estimates any

further.

Next, I consider allowing the baseline time trend to vary randomly across cases, which

corresponds to Model MB4. RML estimates are reported in the second column of Table

4.3; predicted trend lines based on this model are plotted in Figure 4.4 using short,

dotted lines. A likelihood ratio test comparing MB3 to MB4 rejects the simpler model

(p = 0.001); visual inspection of the predicted trends also suggests an improved fit.

Based on the RML estimates from Model 4, the intervention has a very small im-

mediate effect, raising participants fatigue scores by γ̂10 = 0.2 scale points, followed by

decreases of γ̂30 = 1.6 scale points per week. Combined, the treatment effect after seven

weeks of intervention is -12.0 scale points. This treatment effect estimate is in the same

units as the outcome measure; to convert it into an effect size, estimates of the model’s

variance components are needed. The RML estimate of within-case variance is σ̂2 = 29.4
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Figure 4.4. Empirical Bayes estimates of case-level trends for Schutte et al.
(2008). Trends are extended through 7 weeks of treatment, to illustrate the
implicit extrapolation in the target effect size.

squared scale points, assumed to be constant across measurement occasions. The between-

case baseline variation is much larger: τ̂ 2
0 = 95.7 squared scale points. Recall that the

between-case variation is specific to a point in time, because MB4 assumes that the base-

line trends vary across cases. Since I have centered time C = 9 weeks, τ 2
0 represents the
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between-case variation in the average level of the outcome at week 9, in the absence of

treatment. Therefore, the total variation at week 9 is τ 2
0 + σ2, the square-root of which

goes into the denominator of the effect size. I estimate the unadjusted effect size as

δ̂AB = (γ̂10 + 7γ̂30) /
√
τ̂ 2

0 + σ̂2 = −1.07 s.d. After using the estimated degrees of freedom

ν = 14.3 to make a small-sample correction, the adjusted effect size is gAB = −1.01 s.d.,

with a standard error of 0.47. According to MB4 estimates, the average baseline trend

is slightly negative (γ̂20 = −0.54), though there is variation across cases (τ̂ 2
2 = 1.99).

Also, steeper trends are highly associated with higher average outcomes at week 9, with

a correlation of τ̂20/(τ̂0τ̂2) = 0.81.

I consider one further model for these data. MB5 assumes that baseline intercepts,

baseline trends, and treatment-by-trend interactions all vary across cases, implying a

covariance matrix for the random effects that has six parameters. With only twelve cases,

use of RML estimation might be questionable if my goal were to draw inferences about the

structure of the case-level random effects. However, the simulation evidence presented in

the previous chapter tentatively suggests that for purposes of effect size estimation, RML

may be a reasonable strategy even with such a limited sample of cases.

The final column of Table 4.3 reports RML estimates for MB5. RML estimation of this

model leads to an estimated correlation of one between the random effects of trend and

treatment-by-trend interaction (i.e., τ32/(τ3τ2) = 1). Using an equal mixture of χ2
2 and χ2

3

as a reference distribution, the likelihood ratio test for MB5 versus MB4 is statistically

significant (p = 0.021), though this asymptotic test may provide poor guidance with such

a small sample of cases.
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Though the estimated fixed effects based on MB5 are very similar to those from

MB4, the estimated variance components and effect size are quite different. In particular,

the between-case variation is only τ̂ 2
0 = 38.3 squared scale points, compared to 95.7

under MB4, and the within-case variation is σ̂2 = 22.5 squared scale points, compared

to 29.4 under MB4. The unadjusted effect size estimate is δ̂AB = −1.50 s.d.; after the

degrees-of-freedom adjustment, gAB = −1.33. These estimates are much larger than

the corresponding estimates from MB4 due mostly to the much smaller estimate of the

between-case variation at week 9, which is only partially tempered by the reduced degrees

of freedom.

MB5 allows the effect of the treatment on the slope of the outcome series to vary

across cases, unlike in MB4. The RML estimate of the treatment-by-trend variance is

τ̂ 2
3 = 3.01, corresponding to a standard deviation of 1.73 scale points per week. One can

get a sense of the extent of variation in treatment effects by comparing the effect of a

7 week treatment course across cases. Using the empirical Bayes estimates of individual

random effects, the individual effects after 7 weeks of treatment range from -33.53 to

0.57 scale points; for case C, MB5 predicts that the treatment actually leads to slightly

increased fatigue.

4.4. Anglesea, Hoch, & Taylor (2008)

The fourth example comes from a treatment reversal design and illustrates Models

TR1 and TR2. This example was also analyzed in Hedges et al. (2012b), where it was

chosen to demonstrate their calculations on a design with a very small number of cases.
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Figure 4.5. Data from Anglesea et al. (2008): Eating time in seconds by
session. Solid vertical lines denote changes between treatment and no-
treatment phases. Horizontal lines represent the empirical Bayes estimates
of each child’s average eating time, based on Model TR1 (dashed lines) or
TR2 (solid lines).

Anglesea, Hoch, and Taylor (2008) used an ABAB design to evaluate the effect of

using an electronic pager prompt to moderate the rapid eating of children with autism.

The design included m = 3 teenage males. Cases were measured between 2 and 7 times

in each of the four phases. The primary outcome measure was a latency measure: the

amount of time (in seconds) taken to consume a target food during lunch time. Figure

4.5 displays a plot of the data from each case.
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The HPS estimation methods rely on the assumptions of Model TR1, which posits

that cases vary in the level of the outcome but that the treatment has a constant, additive

effect for all cases. To facilitate comparison of estimation methods, Table 4.4 reports the

HPS estimates of TR1 in column 1 and the RML estimates, including the adjusted RML

effect size estimate, in column 2. The two methods produce substantially different effect

size estimates: based on HPS, the effect is estimated to be 1.15 s.d., while based on RML,

the effect is estimated as 1.491 s.d., nearly 30% larger. The difference between the two

estimates stems largely from a difference in the degrees of freedom used for bias correction;

with such small values of ν, bias correction makes a substantial difference. The difference

in the degrees of freedom stems in turn from differing variance component estimates: the

HPS method leads to a very large within-case reliability τ̂ 2
0 /(τ̂

2
0 + σ̂2) of 0.92 while the

RML estimate is 0.73.

Given that the two estimation methods are based on the same model, it may seem odd

that they produce such different variance component estimates. I offer two observations to

shed light on the discrepancy. First, the HPS method estimates the within-case variance

σ2 using within-case, within-phase sample variances, which do not constrain the treatment

effect to be constant across either cases or phases; in contrast, the RML method relies on

those constraints, which inflates the estimated within-case variance (as well as the auto-

correlation estimate). Second, the HPS method uses an estimate of the total variance that

is pooled across phases, an approach that implicitly assumes homogeneity of variance. The

HPS and RML estimates of the total variance are therefore much less incongruous than

respective estimates of the components. Taken as a whole, the dissimilarity between
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Table 4.4. Model estimates for Anglesea et al. (2008) data

Model TR1 Model TR2

HPS RML RML
Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Variance components

Autocorrelation (φ̂) 0.176 0.498 (0.143) 0.200 (0.158)
Within-case var. (σ̂2) 198.4 569.5 (164.2) 218.8 (48.8)
Between-case var. (τ̂20 ) 2149.5 1509.6 (1600.6) 900.3 (933.1)
Case-treatment cov. (τ̂10) 274.2 (996.3)
Treatment var. (τ̂21 ) 2000.9 (2063.2)
Total var. (τ̂20 + σ̂2) 2347.8 2079.1 (1604.2) 1119.1 (933.9)

Fixed effects
Intercept (γ̂00) 60.762 (23.340) 60.633 (17.636)
Treatment (γ̂10) 86.870 89.595 (7.181) 88.503 (26.224)

Effect size

Unadjusted (δ̂AB) 1.793 1.965 2.645
Adjusted (gAB) 1.150 (1.562) 1.491 (0.988) 1.889 (1.858)
degrees of freedom (ν) 2.340 3.359 2.872
Constant (κ) 0.091 0.157 0.784

Log-likelihood -241.5 -227.3
Akaike Info. Criterion 493.1 468.7

the results of the two estimation methods highlights the inadequacy of Model TR1 as a

description of the data.

Table 4.4 also reports the RML fit of Model TR2, which allows the treatment effect

to vary across cases. The less-constrained model leads to a greatly improved fit, whether

judging by visual inspection of Figure 4.5 or using a formal criterion.6 The fixed effect

estimates of TR2 remain nearly identical to those from the RML fit of TR1, but the

variance component estimates change drastically. The between-case baseline variance

estimate τ̂ 2
0 shrinks from 1509 to 900 while the within-case variance σ̂2 shrinks from 570

6A likelihood ratio test of TR1 versus TR2 rejects the more constrained model (p < 0.001).
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to 219.7 This leads to an estimate of the total variance in the absence of treatment that

is only 54% of the estimate from TR1, and consequently an effect size estimate that is

27% larger than the RML estimate of TR1 (64% larger than the HPS estimate). Note

as well that the effect size estimate has a very large standard error; heuristically, this is

because allowing the between-case variation to change by treatment condition leaves even

less data available to estimate the total variation across cases in the absence of treatment.

Of the two models and three sets of estimates that I have presented, I prefer the

RML estimate of TR2 because it appropriately captures the variability in the treatment

effect across cases. On average, the effect of the pager prompt is to increase the time

taken to consume the target foods by 1.9 s.d. (with a standard error of 1.9 s.d. units).

The pager prompt also appears to have a highly variable effect across cases, since the

estimated standard deviation of the individual treatment effects is τ̂1 = 44.7 seconds, or

τ̂1/
√
τ̂ 2

0 + σ̂2 = 1.3 s.d. units.

4.5. Lambert, Cartledge, Heward, & Lo (2006)

The final example comes from a treatment reversal design, chosen to explore the non-

linear models TR3 and TR4. Because comparison of estimation methods is not the focus,

HPS estimates of Model TR1 are omitted even though this example was also analyzed in

Hedges et al. (2012b).

7Note that the RML estimate of the within-case variance from TR2 is much closer to the HPS estimate.
This is because HPS estimates σ2 using within-case, within-phase sample variances, a method that allows
for between-case heterogeneity as in Model TR2. The RML estimate of TR2 remains somewhat larger
than the HPS estimate because the latter also partitions out variation between replications of the same
treatment condition on each case.
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Figure 4.6. Data from Lambert et al. (2006): Number of intervals with dis-
ruptive behavior by session, for 9 students across two classrooms. Teach-
ers used conventional single-student responding during “SSR” phases and
response cards during “RC” phases. Solid vertical lines denote changes
between treatment and no-treatment phases.

Lambert et al. (2006) evaluated the effect of a particular classroom teaching technique–

using response cards during question-and-answer sessions versus more conventional single-

student responding–on the disruptive behavior of fourth grade students. Using an ABAB
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design and a partial interval recording technique, the investigators measured the level of

disruptive behavior among nine target students across two classrooms. I cited this study

in Section 2.3.4 as an example of an intervention at a higher level of assignment (the

classroom, versus the student). It is difficult to properly account for this nested struc-

ture because the study took place in just two classrooms; consider that a (hypothetical)

randomized trial conducted on the same sample would have had only one independent

unit in each treatment condition. For present purposes, I neglect this aspect of the study

design, instead treating each student as an independent case. Figure 4.6 plots the data

from each of the nine students.

I begin by fitting the linear models TR1 and TR2 to these data. Table 4.5 reports

the RML estimates of the model parameters and the adjusted RML effect size estimates.

Based on TR1, using response cards rather than single-student responding reduces student

disruption by about 5.4 intervals per session, per student (i.e., over 50% of the possible

intervals) for an adjusted standardized mean difference of -2.4 s.d. TR2 fits only slightly

better than TR1.8 The less constrained TR2 suggests that there is a small degree of

treatment heterogeneity across cases, but also produces correlation of -1 between the

treatment effect and the average level of disruption during single-student responding, a

rather suspect estimate.

Models TR1 and TR2 assume that the level of each student’s disruptive behavior is

constant in the absence of intervention, and that the treatment effect has an immediate,

transient effect on the level of disruption. Visual inspection of Figure 4.6 suggests that

the treatment effect might not be fully transient (note in particular the curvature evident

8Using an even mixture of χ2
1 and χ2

2 distributions, a likelihood ratio test of TR1 versus TR2 is only
marginally significant (p = 0.050).
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Table 4.5. Model estimates for Lambert et al. (2006) data

Model TR1 Model TR2 Model TR4
RML RML RML, ω = 0.294

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)

Variance components

Autocorrelation (φ̂) 0.267 (0.064) 0.243 (0.067) 0.212 (0.067)
Within-case var. (σ̂2) 4.528 (0.445) 4.343 (0.434) 4.054 (0.399)
Between-case var. (τ̂20 ) 0.473 (0.371) 1.220 (0.829) 1.525 (0.968)
Case-treatment cov. (τ̂10) -0.905 (0.723) -1.317 (0.930)
Treatment var. (τ̂21 ) 0.671 (0.752) 1.138 (1.015)
Total var. (τ̂20 + σ̂2) 5.001 (0.547) 5.563 (0.907) 5.578 (1.025)

Fixed effects
Intercept (γ̂00) 6.796 (0.320) 6.809 (0.427) 7.021 (0.462)
Treatment (γ̂10) -5.396 (0.309) -5.413 (0.405) -5.990 (0.471)

Effect size

Unadjusted (δ̂AB) -2.413 -2.295 -2.536
Adjusted (gAB) -2.402 (0.191) -2.272 (0.255) -2.504 (0.308)
degrees of freedom (ν) 167.130 75.320 59.295
Constant (κ) 0.138 0.172 0.199

Log-likelihood -569.7 -567.1 -560.6
Akaike Info. Criterion 1149.3 1148.2 1135.2

in the second single-student responding phase). I now explore whether models TR3 and

TR4, which allow for more gradual forms of transience, can better capture the shape of

the mean outcome process across phases.

Following the method described in Section 3.3.6, I fit the non-linear models by profiling

in the decay parameter ω. Figure 4.7 displays the profile log-likelihood as a function of ω

for models TR3 and TR4. The log-likelihood of TR4 is maximized at ω̂ = 0.294, reaching

a value of −560.6 (compared to -564.8 for TR3 at the same value of ω). The final column

of Table 4.5 reports the RML fit of TR4, conditional on the estimated ω̂. The estimated

treatment effect is somewhat larger (γ̂10 = −6.0) than in the other models, while the total

variance estimate is comparable to that of TR2. As with TR2, the correlation between
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Figure 4.7. Profile log-likelihood in ω for Models TR3 and TR4, based on
Lambert et al. (2006) data.

the treatment effect and the level of the outcome in the absence of treatment is estimated

as -1.

In the non-linear TR4, the magnitude of the design-comparable standardized mean

difference depends on the pattern of treatment assignment. To provide the greatest com-

parability with TR1 and TR2, I consider the effect size γ10/
√
τ 2

0 + σ2, which can be

interpreted as the equilibrium effect of continually using the treatment.9 Based on the es-

timates for TR4, the equilibrium effect size is estimated as gAB = −2.5 s.d., slightly larger

than the estimates from the simpler, linear models, and with a slightly larger standard

error.

As a sensitivity analysis, I calculated an approximate confidence interval for ω using

the log-profile likelihood and examined the effect size estimate for values within this

9Note also that with the estimated decay parameter of ω̂ = 0.294, the effect of using response cards for
four or more days is substantively equal to the equilibrium effect.
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interval.10 I found that that the effect size estimate ranged from -2.40 to -2.59 s.d., with

larger values of ω leading to more negative effect size estimates in an approximately linear

relation over the range of values considered. Thus, the effect size estimate is relatively

insensitive to the value of ω considered, which provides some small justification for the

profiling method used to estimate it.

Figure 4.8 plots the empirical Bayes estimates of the average level of disruptiveness for

each student in each phase of the study. The non-linear model TR4 appears to capture

some of the curvature in the outcomes that is evident just after changes in treatment

condition, leading me to prefer it over the linear TR1 or TR2. Actually though, none of

the models considered provides a very good description of the data because the outcome

measure has a constrained range of [0,10] and much of the data are near the extremes of

that range. A sound model for this study will need to better account for the properties

of the outcome measurements, a challenge to which I turn in later chapters.

4.6. Discussion

I have presented five examples demonstrating proposed models and estimation meth-

ods for a design-comparable standardized mean difference effect size, using data from

a selection of single-case designs. I conclude this chapter by offering several thoughts

stimulated by these applications.

First, in several of the examples I compared the results of fitting the same model

via RML versus using the HPS methods. In most cases, the two methods produced

10For a fixed value of ω, -2 times the profile likelihood of the RML estimator ω̂ is asymptotically χ2
1-

distributed (Bickel & Doksum, 2007, p. 395). An approximate 1−α-level confidence interval can therefore
be defined defined as the set of values of ω with profile likelihood greater than lp(ω̂)− 1

2χ
2
1(1−α), where

lp(ω) is the profile likelihood at ω and χ2
1(p) is the pth quantile of the χ2 distribution with one degree of

freedom. In this example, a 95% confidence interval is given by {ω : lp(ω) > 560.6− 1.9} = (0.15, 0.43).
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Figure 4.8. Empirical Bayes estimates for Lambert et al. (2006) data, based
on Models TR1, TR2, and TR4.

very similar effect size estimates when based on the same underlying model. However

the discrepancy seen in the Anglesea et al. (2008) example demonstrates a drawback of

the nuisance parameter estimators ued by HPS. Specifically, the HPS estimator of the

within-case variance in models MB1 and TR1 uses assumptions that are not internally
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consistent with the assumptions behind their estimator of the total variance, leading

to an odd estimator for the within-case reliability ρ. This is a relatively minor issue,

given that the HPS effect size estimator is designed to be robust to mis-estimation of the

nuisance parameters, but it made a difference in a study where the degrees of freedom

were very small. The problem could be mitigated by using RML estimates of the nuisance

parameters while otherwise following the HPS method for effect size estimation. More

importantly, in none of the examples was the simplest model–the only one considered

by HPS–preferred over the alternatives, which again highlights the importance having

estimation methods that are extensible.

Second, the applications in this chapter were based on a rather rudimentary model

selection strategy. I have proceeded by relying on graphical representations of the data,

augmented by empirical Bayes estimates of the case-level trends. Such graphs, which

depict model predictions as well as the raw data, may be a particularly important and

valuable tool in this context due to the long and established tradition of visual analysis

in single-case research.11 I have also reported likelihood ratio tests (Stram & Lee, 1994)

to support my model selections, but it is important to keep in mind that these tests

rely on asymptotic approximations that may be a poor when the data contain only a

few independent cases (Crainiceanu, Ruppert, & Vogelsang, 2003). Furthermore, I noted

in Chapter 3 that there single-case researchers may have a strong a priori preference

for more richly parameterized models, in which case likelihood ratio tests would not be

immediately relevant.

11Empirical Bayes predictions can also be a useful tool for practitioners who use single-case research
in clinical settings, insofar as they can provide improved estimates of treatment effectiveness for each
individual case (Zucker et al., 1997).
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Finally, throughout this chapter I have tried to demonstrate useful practices in terms of

graphical displays and reporting model estimates. However, due to the focus on estimation

of design-comparable effect sizes, my presentation has omitted relevant details regarding

model checking. Future work will need to identify good tools for model assessment, explain

their use, and develop guidance around what details should be presented in journal articles

that report primary analyses of single-case studies. This will be important if hierarchical

modeling of single-case data is to become a relevant and practical analytic strategy.



154

CHAPTER 5

Measurement-comparable effect sizes for free-operant behavior

A desirable characteristic of any effect size measure is that its magnitude should not

depend on the operational details of how the outcome construct was measured. Effect

sizes that have this property are measurement comparable (see Section 1.1.2). Without

measurement comparability, it becomes very difficult to draw meaningful inferences from

averages across and comparisons between effect size estimates because true variation in

magnitude is confounded by differences between measurement scales.

Previously proposed effect sizes for quantifying the results of single-case studies have

addressed measurement comparability in one of two ways. First, some have argued that

standardizing outcomes based on within-case sample variances makes the resulting ef-

fect sizes comparable (e.g., Hershberger et al., 1999; Swaminathan et al., 2010; Van den

Noortgate & Onghena, 2003b). Second, others have proposed effect size metrics on a

0-to-100% scale, arguing that a uniform scale permits direct comparison (e.g., Parker,

Vannest, & Davis, 2011; Scruggs & Mastropieri, 2012). For the most part, proposed ef-

fect sizes have been described in terms of computational formulas, unmotivated by any

particular statistical model. Claims of measurement comparability have therefore gone

unscrutinized.

In this chapter, I propose several effect size measures that are motivated by a particular

stochastic model, which permits their measurement comparability (or lack thereof) to be

established in precise and formal terms. In contrast to previous chapters, I set aside
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issues of design comparability, focusing instead on effect sizes for quantifying treatment

effects at the level of the individual case. I do so because individual-level effect sizes are

more intuitively interpretable and more closely aligned with the dominant conception of

treatment effects in single-case research.

Rather than attempting to model the comparability of any and all outcome measure-

ment operations used in single-case research, I limit the scope of this investigation to one

particular class: direct observations of behavior in free-operant contexts. Free-operant

contexts are defined by a setting or time-frame in which behaviors are free to occur at

any time, without prompting or restriction by the investigator. This scope limitation is

appropriate for three reasons. First, as discussed in Section 1.2.2, it is very common for

single-case studies to use outcomes based on direct observation of free-operant behavior;

thus, even methods specialized to this outcome domain will still be widely applicable.

Second, empirical meta-analyses of single-case research often employ similar scope limi-

tations in defining a search strategy (e.g., Gage, Lewis, & Stichter, 2012; Hart & Banda,

2009; Shogren, Faggella-Luby, Bae, & Wehmeyer, 2004) or draw similar distinctions be-

tween outcome domains at the analysis stage (e.g., Machalicek et al., 2008). Finally, a

measurement comparability model that is applicable across multiple outcome domains

will almost certainly involve stronger and more tenuous assumptions than a model for

a single domain. Models for other outcome domains and for cross-domain comparisons

remain a topic for future work.

Within the domain of directly observed, free-operant behavior, several different pro-

cedures are commonly used to record measurements. As noted in Section 1.2.2, four of

the most common procedures are event counting, continuous recording, momentary time
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sampling, and interval recording.1 Using event counting (also known as frequency record-

ing or the tally method), the observer notes the start of each occurrence of a behavior,

either by recording the time of each occurrence or simply by tallying the number of oc-

currences. Often, the data from an observation session are summarized by the number

of occurrences per fixed unit of time. Using continuous recording (also known as dura-

tion recording), the observer notes the beginning and end of each instance of a behavior.

This technique is aided by the use of electronic recording equipment for noting times

and behavior codes, though it can also be done simply by starting and stopping a timer.

Often, the data from an observation session are summarized by the proportion of session

time during which a behavior is observed. Using momentary time sampling (also known

as time-sample recording), the observer notes whether a behavior is or is not occurring

at each of a set of fixed moments in time, which are typically equally spaced over the

course of a session. Often, the data from an observation session are summarized by the

proportion of moments at which the behavior is observed.

Finally, interval recording techniques have a long history within behavioral analysis

and go by several different names, including interval sampling, one-zero sampling, modified

frequencies, Hansen sampling, or simply time-sampling (Mann et al., 1991). Two variants

of the technique are partial interval recording and whole interval recording. In both

variants, an observation session is divided into short time intervals, sometimes with a

short break in between each interval to allow time for recording observations.2 In partial

interval recording, each interval receives a score of one if the behavior occurs at any point

1Terminology varies somewhat across authors. My presentation follows the terminology and the main
outline of Ayres and Gast (2010).
2For instance, a 20 minute session may be divided into 60 intervals, each with 15 seconds for observation
and 5 seconds for recording.
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during the interval, and otherwise receives a score of zero. In the less common variant

of whole interval recording, an interval is scored as a one if the behavior occurs for the

entire interval, and is otherwise scored as a zero. Both variants are typically summarized

by the proportion of intervals receiving scores of one (equivalently, the mean score across

the intervals).

The properties of the main direct observation recording procedures have long been

subject to scrutiny and debate. Much of the debate has centered on the theoretical inter-

pretation and practical utility of interval recording methods (J. Altmann, 1974; A. Harrop,

Daniels, & Foulkes, 1990; Mann et al., 1991). The sensitivity of results to variation in

recording methods has been studied through simulations (e.g., A. Harrop & Daniels, 1986;

Rapp, Colby-Dirksen, Michalski, Carroll, & Lindenberg, 2008) and through empirical ex-

amples (e.g., Alvero, Struss, & Rappaport, 2007; Bornstein, 2002; Gardenier, MacDonald,

& Green, 2004; Gunter, Venn, Patrick, Miller, & Kelly, 2003; Murphy & Goodall, 1980;

J. Powell, Martindale, & Kulp, 1975; Rapp et al., 2007), but rarely through formal mod-

eling. The most relevant exception is Rogosa and Ghandour (1991), who used alternating

renewal process models to study the psychometrics of behavioral observation procedures.

In practice, various operational procedures might be applied to measure very similar

constructs. For example, Shogren et al. (2004) conducted a systematic review of single-

case studies examining the effects of providing choice-making opportunities on the problem

behavior of disabled children.3 They identified 13 studies meeting search criteria, including

a total of 32 individual cases. The primary outcome for each case was problem behavior,

but the procedures used to measure problem behavior varied across cases and studies.

3The authors synthesized the results of identified studies using percentage of non-overlapping data (PND)
and percentage of zero data (PZD) as effect size metrics.
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Table 5.1 reports the study design and the number of individual cases measured using

each recording procedure for each study included in the review. For the majority of

studies and cases, problem behavior was measured using interval recording (following a

partial interval recording procedure in all but one case). The next most commonly used

method was continuous recording, applied in one study with five cases.4 This systematic

review, which attempted to synthesize studies using heterogeneous operational procedures

for measuring a common construct, motivates the in-depth consideration of measurement

comparability presented in this chapter.

In examining the comparability of different measurement procedures, I follow an ap-

proach similar to Rogosa and Ghandour (1991), using a stochastic model for the free-

operant behavior that is observed over the course of an observation session, or what

is sometimes called the “behavior stream” (e.g., Hartmann & Wood, 1990; Schoenfeld,

1972). Because the model for the behavior stream has to do with measurements made

and recorded during the course of a single observation session, I call it the within-session

model. In addition to the within-session model, a between-session model is needed to

describe changes in behavior across subsequent observation sessions and phases of the de-

sign. This chapter considers the simplest possible such model, assuming that the behavior

stream process is stable within a given phase, and therefore that repeated measurements

4Four cases were measured using procedures that I have categorized as ”other.” All of these studies
measured individuals’ problem behavior as they performed a set of fixed task steps that varied from
case to case, ranging from clerical tasks in a school setting to self-care or house-keeping in a residential
setting. In these cases, outcomes were reported as the proportion of task steps during which the individual
displayed problem behavior.
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are identically distributed and uncorrelated. Chapter 6 considers more elaborate between-

session models that allow deterministic time trends and serially dependent variation in

behavior.

The remainder of this chapter is organized as follows. In Section 5.1, I describe and

analyze a within-session model of the major measurement procedures for direct behav-

ioral observation in free-operant contexts. In Section 5.2, I define several different effect

size measures for quantifying changes in free-operant behavior and note the relationships

among the different measures. In Section 5.3, I propose simple moment estimators that

can be applied when behavior is stable within phases, repeated measurements are un-

correlated, and the outcome is a direct measure of a behavioral parameter. In Section

5.4, I sketch several methods for use with partial interval recording data, which is not

a direct measure. Section 5.5 presents an in-depth application of the methods to the

systematic review by Shogren et al. (2004). Section 5.6, notes limitations, discusses the

choice between alternative effect sizes, and concludes.

5.1. Within-session models for behavior stream, recorded, and reported data

In this section, I present a model that puts the different observation procedures on a

common basis. I do this by relating the data generated by different procedures to behavior

stream, that is, the sequence of behaviors that occur over the course of an observation

session. I then propose a stochastic model for the behavior stream and examine its

implications for the data generated by each procedure.

It is important to bear in mind that this section is focused entirely on describing

measurements, meaning the process by which a single datum is generated. Previous
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chapters have referred to data Yij for case i = 1, ...,m and measurement occasions j =

1, ..., ni; this section is a model for a single measurement Y . I will refer to Y as a reported

datum, because typically it is only this observation that is reported in a single case study

(often in the form of a single-case graph), and only this information that will be available

for secondary meta-analysis. In addition to the reported data, I will also refer to recorded

data, by which I mean measurements that an observer makes during the course of an

observation session. I reference the recorded data as an intermediate device for describing

the mechanics of different recording procedures and the properties of the reported data.

The behavior stream model considered here, known as an equilibrium alternating

renewal process, is a fairly general model that encompasses a wide variety of special

cases. Even in the general formulation, its implications are strong enough to characterize

the expected value of each type of reported datum. It is this attribute of each procedure

that I interpret as the measurand, or target of quantification. In other words, a procedure

measures its mean outcome over realizations of the stochastic model, and variation around

that mean is simply measurement error.

I proceed by first formalizing the relationships among the behavior stream data,

recorded data, and reported datum for each measurement procedure; I then describe

the assumptions of the equilibrium alternating renewal process model and discuss the

measurement procedures in light of the model.

5.1.1. Behavior stream, recorded, and reported data

I now describe the data generated by a sequence of behavioral events that occur over a

single session, using a structure similar to that used in Rogosa and Ghandour (1991).
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Over the course of a given session, assume that behavioral events occur sequentially and

can be numbered u = 1, 2, 3, ..... Let Du denote the duration of event u = 1, 2, 3, ...; let

D0 = 0; let Eu denote the length of time between the end of event u and the beginning

of event u+ 1, or what I will call the interim time; let E0 denote the length of time until

the first event, with E0 = 0 if event 1 is occurring at the beginning of the observation

period. The quantities {D0, E0, D1, E1, D2, E2, ...} are the underlying (latent) data that

describe the behavior stream from a given session. Further define the counting process

(5.1) N(t) =
∞∑
w=1

I

[
w−1∑
v=0

(Dv + Ev) ≤ t

]
,

where I() denotes the indicator function, so that N(t) is the number of events that have

begun by time t. Finally, define

Y (t) =
∞∑
w=1

I

[
0 ≤ t−

w−1∑
v=0

(Dv + Ev) < Dw

]
= I

N(t)∑
v=0

(Dv + Ev)− t > DN(t)

 ,(5.2)

so that Y (t) = 1 indicates that an event is occurring at time t and Y (t) = 0 indicates

that an event is not occuring at time t.

Based on the underlying behavior stream, the recorded data (and thence the reported

datum) are derived according to one of the observation procedures. Any of several dif-

ferent recording procedures could in principle be applied to the same behavior stream,

generating a reported datum. I will examine five types of recording procedures. In or-

der to differentiate among the reported data produced by each procedure, I will denote

the reported datum from an event counting procedure as Y E, that from a continuous

recording procedure as Y C , that from a momentary time sampling procedure as Y M , that
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Table 5.2. Notation and design parameters for five recording procedures

Quantity
Event

counting
Continuous
recording

Momentary
time

sampling

Partial
interval

recording

Whole
interval

recording

Reported datum Y E Y C Y M Y P Y W

Session length L L L L L
Number of intervals K K K
Active interval length l l

from partial interval recording as Y P , and that from whole interval recording as Y W .

Throughout, I denote the length of the observation session by L. Several of the recording

procedures involve additional design parameters; these are summarized in Table 5.2 and

defined in the course of describing each procedure.

Using event counting, the observer notes the beginning of each new event, producing

recorded data {D0 +E0, D1 +E1, D2 +E2, ...}. The reported datum from this procedure

is simply number of times that the behavior begins over the course of the session, so that

Y E = N(L).

Using a continuous recording procedure, the observer notes the beginning and end of

each behavioral event. If each time is noted, the recorded data can then be used to com-

pletely reconstruct the behavior stream data {D0, E0, D1, E1, D2, E2, ...}. The reported

datum from a continuous recording procedure is the proportion of session time during

which the behavior occurs:

Y C =
1

L

∫ L−

0

Y (t)dt.

Using a momentary time sampling procedure, the observer notes the presence or ab-

sence of a behavior at each of K times within a session, equally spaced at intervals of L/K.

The recorded data are described by a sequence of binary indicator variables X1, ..., XK ,
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where Xk = Y (kL/K). The reported datum is then the proportion of moments at which

the behavior is observed, Y M =
∑K

k=1Xk/K.

In partial interval recording, an observer first divides the session into K intervals, each

of length L/K. The first l time units of each interval are devoted to observation, while

the remainder L/K − l is used for recording or resting; I call l the active interval length.

During a given interval, the observer counts a behavior as present if it occurs at any point

during the active interval; indicators of the presence or absence of behavior during each

of the K intervals constitutes the recorded data. Let Uk = 1 if the behavior occurs at any

point during the kth interval, Uk = 0 otherwise; formally,

(5.3) Uk = I

(
0 <

∫ l−

0

Y (l + (k − 1)L/K) dt

)
,

for k = 1, ..., K. The reported datum from partial interval recording is typically the pro-

portion of intervals during which the behavior is observed at any point: Y P =
∑K

k=1 Uk/K.

Whole interval recording is structured in the same way as partial interval recording:

the session is divided into K intervals of equal length L/K, with the first l time units of

each interval devoted to observation. Only the rule for scoring each interval is different:

in whole interval recording, the observer counts a behavior as present only if it occurs for

the entire duration of the active part of the interval. Formally, let

Wk = I

[∫ l−

0

Y ((k − 1 + t)L/K) dt = r

]
.

The sequenceW1, ...,WK constitutes the recorded data. Note that whole interval recording

is equivalent to partial interval recording applied to the absence of a behavior rather than
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its presence. The reported datum from whole interval recording is the proportion of

intervals during which the behavior is present for the duration: Y W =
∑K

k=1 Wk/K.

So far, I have shown the relationships between the behavior stream data during the

course of a session and the reported datum generated by different recording procedures.

These relationships are entirely deterministic. In order to interpret the measurements

as random variables, I will treat the underlying behavior stream as a realization of a

stochastic process, then derive the properties of the recorded data based on that process.

5.1.2. Equilibrium alternating renewal process

It is useful to examine the properties of the recording procedures under a stochastic model

that invokes only fairly weak assumptions, because the properties so established will apply

in general and regardless of whatever further, stronger assumptions might be considered.

One such model is the equilibrium alternating renewal process (ARP). An equilibrium

alternating renewal process involves the following assumptions:

(1) First, interim times are assumed to be identically distributed random quantities

with distribution function FE, survivor function F̃E = 1−FE, and mean E(E1) =

λ, where 0 < λ <∞.

(2) Likewise, event durations are assumed to be identically distributed random quan-

tities with distribution function FD, survivor function F̃D = 1 − FE, and mean

E(D1) = µ, where 0 < µ <∞.

(3) Further, all interim times and event durations are assumed to be mutually inde-

pendent.
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(4) Finally, the process is assumed to be aperiodic and in equilibrium, so that

Pr(Y (0) = 1) = µ/(µ+ λ).

In addition to the two mean parameters µ and λ, two other quantities will also of interest:

the rate of event occurrence, known as the incidence ζ = 1/(λ + µ), and the event

prevalence φ = µ/(µ + λ). The incidence is the inverse of the average time between

successive events. In an equilibrium process, event prevalence is both the probability that

an event is occurring at any specific moment in time and the overall proportion of time

that an event is occurring.

Note that the ARP model parameterizes only the first moments of the event durations

and interim times, and so can encompass a very wide variety of parametric distributions.

For example, event durations and interim times might each be log-normally distributed,

gamma-distributed, or exponentially distributed. The ARP applies even if events have

constant, positive duration, so long as the distribution of interim times is such that the

aperiodicity assumption is satisfied.

The assumptions of the ARP are sufficient to characterize the first moment of the

reported datum from each type of recording procedure. These are summarized in Table

5.3. The expectation of an event counting datum is equal to the product of the session

length and the incidence of the behavior, a fact established by Blackwell’s Renewal The-

orem (Kulkarni, 2010, p. 360). The expectation of a continuous recording datum is equal

to the prevalence of the behavior (Cox, 1962, p. 101), as might be intuitively suspected

since continuous recording is calculated as the sample prevalence of the realized behavior

stream. The expectation of a momentary time sampling datum is also equal to the preva-

lence of the behavior, due to the assumption that the process is in equilibrium. Each of
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Table 5.3. Expectations of reported data under an alternating renewal process

Recording procedure E(Y )

Event counting ζL
Continuous recording φ
Momentary time sampling φ

Partial interval recording φ+ ζ

∫ l−

0

F̃E(x)dx

Whole interval recording φ− ζ
∫ l−

0

F̃D(x)dx

these three recording procedures yields a reported datum that is a direct measurement of

a parameter of the ARP; I therefore refer to them as direct measurement procedures.

It is apparent from Table 5.3 that partial and whole interval recording procedures

produce measurements that have no immediate interpretation in terms of the parameters

of the ARP; thus, they are not direct measurement procedures.5 Instead, the expectation

of an interval recording datum depends on both the prevalence and incidence of the

behavior, as well as on the interval length and the distribution of interm times or event

durations. I provide derivations of the expectations in Appendix B.1.6 Although many

studies have investigated the sensitivity and accuracy of interval recording procedures

using simulations or empirical examples, there is little statistical guidance regarding the

5It has long been recognized that interval recording data measures neither prevalence nor incidence. See
for instance J. Altmann (1974) for a discussion of the origins and arguments regarding interval recording
methods.
6To my knowledge, exact expressions for the expectations of the interval counting procedures have not
previously been given in a general form, though two previous analyses should be noted. First, Kraemer
(1979) observed that, fixing a realization of the behavior stream, the reported datum from a partial
interval recording procedure is an approximately linear combination of the sample prevalence and sample
incidence. Second, Rogosa and Ghandour (1991) provided the expectation of a reported partial interval
recording datum for the special case of an alternating poisson process, in which both D1 and E1 follow
exponential distributions.
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interpretation of this type of data. It is therefore worth dwelling briefly on its properties.

I focus on partial interval recording because it is the more common procedure.

As a measure of behavioral prevalence, the expectation of a partial interval recording

datum has bias that depends on the length of the active interval l, the incidence ζ, and

the distribution of the interim times FE.7 All of these dependencies create complications

for the interpretation of partial interval data and are problematic with respect to mea-

surement comparability. Consider first that the bias depends on the incidence and on

the chosen interval length. Figure 5.1a plots the bias of Y P as a function of the interval

length for interim times following an exponential distribution, holding prevalence fixed

at φ = 1
6

and varying incidence ζ = 1
40
, 1

60
, 1

120
. It can be seen that the bias increases

with interval length and with incidence, and that for longer interval lengths, the bias is

increasingly affected by the incidence. This sensitivity implies that data collected using

15-second partial interval recording is not directly comparable with data collected us-

ing 10-second or 30-second intervals. Partial interval recording is thus an operationally

sensitive measurement procedure.

Next, consider that the bias depends on the interim time distribution FE. Figure 5.1b

replicates 5.1a, but uses a gamma distribution with shape parameter 3 rather than an

exponential distribution; compared to the figure on the left, the same qualitative relation-

ships hold but with differing magnitude. Bias that depends on the entire distribution of

interim times (rather than just on the average) is particularly troublesome because it will

7Note however that the bias does not depend on the distribution of event durations FD except through
the mean event duration µ.
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Figure 5.1. Bias of partial interval recording datum E
(
Y P
)
− φ as a func-

tion of active interval length l, prevalence φ, incidence ζ, and interim time
distribution FE. Dotted blue lines correspond to ζ = 1

40
; dashed red lines

correspond to ζ = 1
60

; solid green lines correspond to ζ = 1
120

.

often be difficult to obtain information about FE. Even a primary researcher who has per-

sonally collected the observations might find it difficult to characterize this distribution,

to say nothing of a secondary meta-analyst.

In a typical application of partial interval recording, a fixed interval length will be

used to collected data for multiple observation sessions. Figures 5.1(c) and (d) plot the

bias of Y P for a constant active interval length l = 15 while varying φ, ζ, and FE. For
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the smallest value of the incidence ζ = 1
120

, the bias is relatively insensitive to φ except

when the prevalence is near 1; for larger values of the incidence, the bias is sensitive over

wider ranges of φ. These relationships hold regardless of whether interim times follow an

exponential or a gamma distribution, and suggest a strategy for bounding the magnitude

of the bias.

The bias of Y P as a measure of prevalence can be bounded under certain assumptions

about the event durations and interim times. Suppose that bounds for the average event

duration can be established using prior experience or other data, so that µ∗L ≤ µ ≤ µ∗U

for known µ∗L, µ
∗
U . Suppose further that at most p∗× 100% of interim times last less than

l, so that FE(l) ≤ p∗.8 It follows that the proportionate bias of Y P is bounded by

(5.4)
(1− p∗)l

µ∗U + (1− p∗)l
≤

E
(
Y P
)
− φ

E (Y P )
≤ l

µ∗L + l
.

A derivation can be found in Appendix B.2. Note that the assumption involving p∗ is

only relevant if an upper bound for µ can be established; otherwise, the lower bound on

the bias reduces to 0. Conversely, if no informative bound on FE(l) can be established,

then p∗ = 1 and the lower bound on the bias reduces to 0, regardless of any assumption

about µ∗U . Still, so long as a lower bound µ∗L is given, an informative upper bound on the

bias of Y P can be established.

Partial interval recording data is also sometimes interpreted as measuring incidence

rather than prevalence, particularly when event durations are known to be very short.

A bound on its bias as a measure of incidence can be constructed using an argument

8Making an assumption about the proportion of interim times lasting less than a fixed amount of time
strikes me as more reasonable and feasible than making an assumption about the entire parametric
form of FE ; clearly, however, assumptions such as these will need to be evaluated by researchers with
subject-matter expertise, in the context of applications.



171

similar to the above. Suppose that an upper bound for the average event duration can be

established, so that µ ≤ µ∗U ; also suppose that FE(l) ≤ p∗ for known p∗. The proportionate

bias of Y P as a measure of incidence is then bouned by

(5.5)
(1− p∗)l − 1

(1− p∗)l
≤

E
(
Y P
)
− ζ

E (Y P )
≤ µ∗U + l − 1

µ∗U + l
,

See Appendix B.2 for a derivation. I revisit these bounds in Section 5.3, when considering

estimation strategies.

5.2. Case-level effect size parameters

The ARP model provides a basis for understanding the relationships among measure-

ments generated by different observation procedures and consequently for establishing the

measurement-comparability of different effect sizes. This is because effect sizes defined

in terms of the parameters of the ARP can be interpreted in terms of the data from any

of the measurement procedures, rather than being contingent on the procedure. In this

section, I propose several such effect sizes for measuring behavioral changes and describe

the relationships among them.

Before turning to the effect sizes, the ARP model needs to be elaborated in order

to allow for changes in behavior from measurement occasion to measurement occasion.9

The model from the previous section described the behavior stream observed on an single

measurement occasion, leading to a single reported measurement. Now suppose that

interest is in comparing the behavior of an individual under different treatment conditions.

9The ARP model itself deals with observation over time, but over the relatively brief spans of time
during which behaviors are observed. In single-case studies, observation sessions are typically a matter
of minutes, while the time between measurement occasions may be on the order of hours or days; an
expanded model is needed to describe this session-to-session time scale.
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In this and following sections, I focus on a very simple model in which the behavior stream

process is stable under a given treatment condition.

Consider a study in which a total of n outcome measurements are made using mea-

surement procedure r, where r ∈ {E,C,M, P,W}. The reported data are then Y r
j , for

j = 1, ..., n.10 Let Tj = 1 if the case is in a treatment phase at time j, with Tj = 0 other-

wise. I assume that for session j, the behavior of the case follows an alternating renewal

process and that the reported data are generated by applying measurement procedure r to

independent samples from that process. I assume that the parameters of the alternating

renewal process are constant within each treatment phase; thus let µ0 denote the average

event duration and λ0 the average interim time in the baseline phase or phases and let

µ1, λ1 denote the average event duration and average interim time, respectively, in the

treatment phase or phases. These assumptions can be summarized as

(5.6)
(
Y r
j |Tj = t

) iid∼Mr

(
ARP

[
µt, λt

])
,

where iid indicates that measurements on successive occasions within a phase are indepen-

dent and identically distributed, Mr() denotes the application of measurement procedure

r to a behavior stream, and ARP (µ, λ) indicates that the behavior stream is generated

by an equilibrium alternating renewal process with mean duration µ and mean interim

time λ.

10In contrast to previous chapters, the focus is on models for an individual case. For ease of notation, I
suppress the i subscript denoting the case.
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Under model (5.6), measurement-comparable effect sizes involve comparisons between

(µ0, λ0) and (µ1, λ1). A number of such comparisons are worth considering; I will de-

scribe five: the log-duration ratio, the log-interim ratio, the log-incidence ratio, the log-

prevalence ratio, and the log-prevalence odds ratio. I focus on logged ratios for two

reasons. First and perhaps most crucially, published single-case studies often describe

results using measures of percentage change (J. M. Campbell & Herzinger, 2010).11 Log-

ratios are very closely related to proportionate changes, and thus have the advantage of

aligning to a certain extent with how applied researchers already think. Second, log-ratios

are useful in a purely technical sense to the extent that they conform to the scales of the

quantities being measured and can be defined without range restriction. Most of the

effect size metrics that I will describe range from negative infinity to positive infinity,

with zero corresponding to no change; this allows certain problems with estimation and

meta-analysis to be avoided.

5.2.1. Log-duration ratio and log-interim ratio

In the abstract, one of the most informative way to quantify a change in behavior would be

to use separate contrasts between each component of the ARP. For instance, the case-level

log-duration ratio, defined as ωδ = ln (µ1/µ0), measures the proportionate change in the

average event duration; the case-level interim ratio, defined as ωλ = ln (λ0/λ1) measures

the proportionate change in the average interim time. These two effect sizes would be

particularly useful in intervention contexts if the experimenters’ goal is to affect change

in one dimension of the behavior but not the other, or to evaluate detailed hypotheses

11As noted in Section 1.3.2, several percentage-change metrics have been proposed as effect sizes for use
with single-case research, though none of these have supporting statistical methodology.
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about the mechanism of an intervention. Unfortunately, these effect sizes might only be

of hypothetical interest, because none of the observation procedures under consideration

yield direct measurements of the separate components.

5.2.2. Log-incidence ratio

The case-level log-incidence ratio is defined as ωζ = ln (ζ1/ζ0) = ln (µ0 + λ0)−ln (µ1 + λ1).

It measures the proportionate change in a behavior’s incidence; if observation sessions are

of equal length, then the incidence ratio is also equivalent to the log of the proportionate

change in the expected number of behaviors during a session. Considering that event

counting directly measures incidence and is a very commonly used procedure, the log-

incidence ratio should be a very useful effect size for describing changes in behavior.

However, as a summary metric it has the disadvantage of not being sensitive to behavioral

prevalence. Rather, an observed decrease in incidence could be the result of either an

increase in average interim time or an increase in average event duration, with very

different substantive implications.

5.2.3. Log-prevalence ratio

When a behavior has non-negligible duration, the foremost concern of interventionists

will often be its prevalence, or the overall proportion of time that it occurs. One metric

for quantifying changes prevalence is the case-level log-prevalence ratio, defined as ωφ =

ln (φ1/φ0) = ln
(

µ1

µ1+λ1

)
− ln

(
µ0

µ0+λ0

)
. This effect size is comparatively straight-forward

to interpret in terms of proportionate changes, as with the other log-ratio effect sizes.

Compared to the log-incidence ratio, the log-prevalence ratio has the advantage of being
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sensitive to changes in both event duration and interim time. However, there are two

inter-related drawbacks to this effect size. First, since prevalence ranges from 0 to 1, the

effect size has a range that depends on the initial level: for a given initial prevalence φ0,

the log-prevalence ratio can never be greater than − ln(φ0). Second, the log-prevalence

ratio is not symmetric with respect to how behaviors are defined; re-defining prevalence

as the proportion of time that behavioral events do not occur will alter the magnitude

of the log-prevalence odds ratio, rather than only affecting the sign. As a consequence

of the latter drawback, application of the log-prevalence ratio will require establishing

conventions as to how behaviors are defined, such as always defining prevalence in terms

of negative or undesirable behavior.

5.2.4. Log-prevalence odds ratio

The case-level log-prevalence odds ratio is an alternative metric for quantifying changes

in prevalence, and is defined as

ψ = ln

(
φ1(1− φ0)

(1− φ1)φ0

)
= ln

(
µ1/λ1

)
− ln

(
µ0/λ0

)
.

This effect size measures proportionate change in the prevalence odds, or the ratio of the

average event duration to the average interim time. As a result, this effect size weighs

a given proportionate increase in duration as equal to a corresponding proportionate

decrease in interim time. In contrast to the log-prevalence ratio, its range is unconstrained

by the initial prevalence ratio (instead, it ranges from −∞ to∞) and it is symmetric with

respect to how behaviors are defined. These mathematical advantages come at the cost
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Figure 5.2. Effect sizes for quantifying change in behavior

of lessened intuitive appeal, since researchers and consumers of research may find odds

ratios more difficult to interpret than proportionate changes.

5.2.5. Relationships among effect sizes

The five effect sizes that I have described represent different metrics for quantifying change

in a behavioral process, as modeled by an ARP. The effect sizes are closely related to one

another because they are all defined in terms of ARP parameters. Under certain condi-

tions, the effect sizes also become either approximately or exactly equivalent, in which case

it is reasonable to directly compare estimates of those different effect sizes. Understanding

the circumstances under which the different effect sizes are measurement-comparable is

important for meta-analytic applications, which will often involve combining information

across studies that used different outcome measurement procedures.
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Figure 5.2 displays the inter-relationships among the effect sizes, with arrows between

two effect sizes indicating equality under a given condition. Thus, if event duration is

constant across the two points of comparison, µ0 = µ1, then the log-prevalence ratio is

equal to the log-incidence ratio and the log-prevalence odds ratio reduces to the log-interim

ratio. Similarly, if the average interim time is constant across the points of comparison,

λ0 = λ1, then the log-prevalence odds ratio is equal to the log-duration ratio. If events

have very short average duration relative to the average interim time, and this is true at

both points of comparison so that µ0 << λ0 and µ1 << λ1, then the log-prevalence ratio

will be approximately equal to the log-prevalence odds ratio and the log-incidence ratio

will be approximately equal to the log-interim ratio.

5.3. Basic effect size estimators

Thus far, I have described a within-session model for outcome data generated by

various measurement procedures, posited a simple between-session model, and defined

several different effect size metrics for measuring changes in directly observed behavior.

This section presents some basic, easily calculated estimators for these effect sizes, for use

with outcome data generated by direct measurement procedures. The following section

considers estimators based on interval recording data.

All of the estimators described in this section involve sample means and sample vari-

ances calculated within phases. Let nt denote the number of observations made in treat-

ment condition t, so that

n0 =
n∑
j=1

(1− Tj), n1 =
n∑
j=1

Tj.
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Let ȳrt denote the sample mean outcome in treatment condition t, so that

ȳr0 =
1

n0

n∑
j=1

Y r
j (1− Tj), ȳr1 =

1

n1

n∑
j=1

Y r
j Tj.

Finally, let s2
rt denote the sample variance of the outcomes in treatment condition t, so

that

s2
r0 =

1

n0 − 1

ni∑
j=1

(
Y r
j − ȳr0

)2
(1− Tj), s2

r1 =
1

n1 − 1

n∑
j=1

(
Y r
j − ȳr1

)2
Tj.

Several of the effect size estimators described in this section can be viewed as special

cases of the log-response ratio, a well-known effect size used for meta-analysis in ecology

and other disciplines (Hedges, Gurevitch, & Curtis, 1999). For sample data collected using

measurement procedure r ∈ {E,C,M, P,W}, define the log-response ratio estimator

(5.7) Lr = ln (ŷr1)− ln (ŷr0)

and variance estimator

(5.8) V r
L =

s2
r0

n0 (ŷr0)2 +
s2
r1

n1 (ŷr1)2 ,

where

ŷrt =


ȳrt ȳrt > 0

ŷrt = crt ȳrt = 0

for constants crt defined below. Hedges et al. (1999) studied the distribution of the log

response ratio under the assumption that the raw data are normally distributed; the exact

distribution theory and approximations that they reported are not applicable with the
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behavioral observation data under consideration here. Furthermore, in some single-case

studies, the within-phase sample sizes n0, n1 can be quite small. I therefore consider an

alternative estimator, based on a second-degree Taylor series approximation to the bias

of Lr:

(5.9) Lr2 = ln (ŷr1) +
s2
r0

2n0 (ŷr0)2 .− ln (ŷr0)− s2
r1

2n1 (ŷr1)2

In the remainder of this section, I describe estimators for the log-incidence ratio, log-

prevalence ratio, and log-prevalence odds ratio based on data collected using a direct

measurement procedure.

5.3.1. Log-incidence ratio estimators based on event counting

Event counting data measures incidence directly. Assuming that session length is held

constant over the duration of the study, the log-response ratio with event counting data,

LE or LE2 , can therefore be used as estimators for the log-incidence ratio ωζ . In simu-

lation studies and the empirical examples discussed in this section, I use the constant

cEt = 1/(2nt) to adjust for zero mean outcomes. Based on simulation studies reported in

Appendix C.1, the bias-corrected estimator LE2 should be used in application, particularly

for short phase lengths, because it is nearly unbiased and has comparable mean-squared

error to the moment estimator LE.

Example 1. For one case reported by Romaniuk et al. (2002), the investigators

used an ABAB design to assess the effect of providing choice between activities (versus

a no-choice condition) on the frequency of problem behavior displayed by a child in a

kindergarten setting. The child’s problem behavior was measured using event counting
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Figure 5.3. Frequency of problem behavior by session for one case from
Romaniuk et al. (2002).

with an observation session L = 5 minutes in length. Figure 5.3 displays a graph of the

data from this case. Based on these data, an estimate of the log-incidence ratio can be

calculated under the assumptions given in (5.6). Pooling across both phases in the no-

choice (baseline) condition, the mean frequency of problem behavior is ȳE0 = 76 and the

sample variance is s2
E0 = 795, based on n0 = 21 observations. Pooling across both phases

within the choice (treatment) condition, the mean frequency of problem behavior is ȳE1 =

104 and the sample variance is s2
E1 = 547, based on n1 = 12 observations. Inserting these

summary statistics into (5.9) and (5.8), the estimated log-incidence ratio is LE2 = 0.31 with

an approximate standard error of
√
V E
L = 0.10. This corresponds to an increase in the

frequency of problem behavior of
[
exp(LE2 )− 1

]
× 100% = 36% when the child is allowed

to choose between activities. An approximate 95% confidence interval for the percentage

increase in problem behavior can be constructed as
[
exp

(
LE2 ± 2

√
V E
L

)
− 1
]
× 100% =

[10%, 67%].
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5.3.2. Log-prevalence ratio estimators based on continuous recording or mo-

mentary time sampling

Continuous recording and momentary time sampling both produce direct measures of

behavioral prevalence. The log-response ratios based on these types of data are therefore

estimates of the log-prevalence ratio ωφ. For continuous recording data, the constant for

adjusting sample mean outcomes of zero should ideally depend on the incidence of the

behavior because outcomes of zero are less probable for higher incidence. Given a prior

estimate of the incidence ζ, one can use cCt = 1/(2ζLnt). For momentary time sampling

data, one can use cMt = 1/(2Knt), where K is the number of intervals per observation

session. As with event counting data, the bias-corrected estimators LC2 and LM2 should be

used in application because they have lower bias and approximately equal mean-squared

error compared to the moment estimators (see Appendix C.1 for details).

Example 2. For five cases reported by Romaniuk et al. (2002), the investigators

measured children’s problem behavior using continuous recording with an observation

session L = 5 minutes in length. Treatment reversal designs with either three or five

reversals were used to assess the effect of providing choice between activities (versus a

no-choice condition) on the prevalence of problem behavior. Figure 5.4 displays graphs

of the data from these cases. A key research question in this study had to do with

whether the treatment was differentially effective for children whose problem behavior

was maintained by escape versus by attention. Prior assessment (through functional

analysis) identified three cases with escape-maintained problem behavior and three cases

with attention-maintained problem behavior.
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Figure 5.4. Prevalence of problem behavior by session for five cases from
Romaniuk et al. (2002). Red circles indicate no-choice condition; blue dia-
monds indicate choice condition.

Table 5.4 reports summary statistics by treatment condition (pooled across phases) for

each of these five cases and also reports estimated log-prevalence ratios LC2 and standard

errors
√
V C
L , calculated according to (5.9) and (5.8), respectively. For the three cases with

escape-maintained behavior, the estimated log-prevalence ratios are large and negative,

ranging from -0.96 to -2.39; for these cases, providing choice-making opportunites greatly
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reduces the prevalence of problem behaviors. A fixed-effects meta-analysis of the three

cases, reported in the penultimate row of the table, provides a succinct summary of

findings.12 The average log-prevalence ratio for cases with escape-maintained behavior is

-1.22, with an approximate 95% confidence interval of [-1.48, -0.95] corresponding to a

reduction of between 61% and 77%.

The sixth row of Table 5.4 includes summary statistics and effect size estimates for

Riley, whose behavior was measured using event counting rather than continuous record-

ing; these estimates were discussed in Example 1. Assuming that the average duration

of Riley’s problem behaviors was unaffected by the intervention (µ0 = µ1), the calculated

log-incidence ratio can be understood as on a comparable scale to the log-prevalence ratios

calculated for the cases measured by continuous recording. Under this assumption, the

estimated log-prevalence ratios for the three cases with attention-maintained behavior are

moderately positive, ranging from 0.12 to 0.31. Based on a fixed-effects meta-analysis (re-

ported in the final row of the table), the average log-prevalence ratio for these cases is 0.23,

with an approximate 95% confidence interval of [0.11,0.34] corresponding to increases in

problem behavior of 13% to 40%.

5.3.3. Log-prevalence odds ratio estimators based on continuous recording or

momentary time sampling

The log-prevalence odds ratio ψ offers an alternative metric for measuring differences or

changes in prevalence. Unlike the log-prevalence ratio, this metric can range from negative

to positive infinity, regardless of the baseline level of prevalence; it treats a proportionate

12I used the metafor package in R (Viechtbauer, 2010) for calculation of the fixed-effects estimates.
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Table 5.4. Effect size estimates for Romaniuk et al. (2002)

,

No Choice Choice

Case
Outcome
measure

Behavior
function

ȳ0 s2
0 n0 ȳ1 s2

1 n1 L2

√
V L ψ̂2

√
Vψ

Brooke C escape 70 792 14 6 52 11 -2.39 0.37 -3.50 0.52
Gary C escape 69 479 16 26 480 16 -0.96 0.23 -1.81 0.38
Maggie C escape 64 531 16 21 96 8 -1.09 0.19 -1.86 0.32
Christy C attention 71 349 15 89 112 10 0.22 0.08 1.13 0.40
Rick C attention 63 644 15 71 368 14 0.12 0.13 0.37 0.38
Riley E attention 76 795 21 104 547 12 0.31 0.10 0.31 0.10

FE meta-analysis
escape -1.22 0.13 -2.14 0.22
attention 0.23 0.06 0.36 0.10

decrease in average event duration as equivalent to the same proportionate increase in

average interim time. For continuous recording data or momentary time sampling data,

and under the assumptions of the stable phase model from (5.6), a basic moment estimator

for ψ is given by

(5.10) ψ̂r = logit (ỹr1)− logit (ỹr0) ,

where logit(x) = ln(x)− ln(1− x) and

ỹrt =



crt ȳrt = 0

ȳrt 0 < ȳrt < 1

1− crt ȳrt = 1

for t = 0, 1 and r ∈ {C,M}. The constants for correcting sample means of zero or

one are identical to those used with the log-prevalence ratio: for continuous recording

cCt = 1/(2ζLnt) and for momentary time sampling, cMt = 1/(2Knt). An estimator of the
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approximate variance of the effect size estimate is given by

(5.11) V r
ψ =

s2
r0

n0 (ỹr0)2 (1− ỹr0)2 +
s2
r1

n1 (ỹr1)2 (1− ỹr1)2 ,

for r ∈ {C,M}. A bias-corrected estimator is given by

(5.12) ψ̂r2 = logit (ỹr1)− s2
r1(2ỹr1 − 1)

2n1 (ỹr1)2 (1− ỹr1)2 − logit (ỹr0) +
s2
r0(2ỹr0 − 1)

2n0 (ỹr0)2 (1− ỹr0)2

for r ∈ {C,M}. Based on simulation results reported in Appendix C.1, the bias-corrected

estimators should be used rather than the moment estimators when the number of obser-

vations per phase is small.

Example 2 (continued). Table 5.4 reports log-prevalence odds ratios estimates

ψ̂C2 and associated standard errors
√
V C
ψ for the five cases from Romaniuk et al. (2002)

that were measured using continuous recording. For four of the five cases, the relative

magnitudes of the log-prevalence odds ratio estimates are comparable to the log-prevalence

estimates. The exception is Christy, whose log-prevalence odds ratio is much larger than

the other two cases with attention-maintained problem behavior, even while her log-

prevalence ratio is intermediate between those of the other two cases. This discrepancy is

due to the fact that the two effect size metrics are less comparable for φ > 0.5. Christy’s

average prevalence is fairly high in both the no-choice (ȳ0 = 71%) and the choice conditions

(ȳ1 = 89%), leading to a divergence between the magnitude of the two metrics.

Table 5.4 also includes an effect size estimate for the one case measured using event

counting (Riley); this effect size is comparable to the estimated log-prevalence odds ratios

under the assumptions that the treatment does not alter average event duration (µ0 =
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µ1) and that the average event durations are very short.13 Based on fixed-effects meta-

analyses, cases with escape-maintained problem behavior had an average log-prevalence

odds ratio of -2.14 (approximate 95% confidence interval: [−2.58,−1.71]) and cases with

attention-maintained problem behavior had an average log-prevalence odds ratio of 0.36

(approximate 95% confidence interval: [0.17, 0.55]). In this example, the log-prevalence

odds ratio and the log-prevalence ratio lead to much the same substantive conclusions and

display similar levels of residual heterogeneity. Pooling across levels of the moderator and

retaining the fixed-effect specification, the Q statistic based on log-prevalence odds ratio

estimates is 12.23, only slightly smaller than the comparable Q statistic of 12.90 based

on log-prevalence ratio estimates. It is therefore very difficult to determine which metric

is preferable on an empirical basis alone.

5.4. Estimators based on interval recording

Interval recording data measures of neither prevalence nor incidence. Consequently,

the response ratio based on interval recording data estimates no directly interpretable

parameter. For instance, consider partial interval recording and denote

πPt = E
(
ȳPt
)

= φt + ζt
∫ l−

0

F̃E(t;λt)dt.

To a very close approximation, the bias-corrected response ratio estimator based on partial

interval recording has expectation E
(
LP2
)
≈ ln

(
πP1
)
− ln

(
πP0
)

(see Appendix C.1). Still,

interval recording data can provide some information about interpretable effect size pa-

rameters under certain assumptions about the behavior being measured. In this section, I

13The investigators noted that this case displayed short-duration problem behaviors, and in fact this was
the motivation for using event counting rather than continuous recording (Romaniuk et al., 2002, p. 351).
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consider several strategies for estimating bounds on the log-incidence ratio, log-prevalence

ratio, log-prevalence odds ratio, and log-interim ratio, based on different identifying as-

sumptions. I focus on partial interval recording because it is much more commonly used;

formally similar assumptions and analysis strategies can be applied for whole interval

recording.

5.4.1. Log-incidence ratio

Suppose that average event durations in each treatment condition are shorter than some

known value µ∗U ≥ µ0, µ1 established based on prior experience. Also suppose that the

interim time between behavioral events is rarely less than the active interval length, so

that FE(l|λt) < p∗ < 1 for known, small p∗, t = 0, 1. Letting

zζ = ln(µ∗U + l)− ln(1− p∗)− ln(l),

it follows from (5.5) that

(5.13) ln
(
πP1
)
− ln

(
πP0
)
− zζ ≤ ωζ ≤ ln

(
πP1
)
− ln

(
πP0
)

+ zζ .

Thus, bounds for the incidence ratio can be estimated from partial interval recording data

by LP2 ± zζ , because LP2 is an unbiased estimator for ln
(
πP1
)
− ln

(
πP0
)
. Note that the

variance of these bounds estimators can be estimated by V P
L because zζ is a fixed quantity.

Example 3. Dunlap et al. (1994) used a treatment reversal design to evaluate the

effect of providing choice between academic activities on the disruptive behavior of three

elementary school students with emotional and behavioral disorders. The investigators
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Figure 5.5. Percentage of partial intervals with disruptive behavior for three
cases from Dunlap et al. (1994). Red circles indicate no-choice condition;
blue diamonds indicate choice condition.

used partial interval recording to measure disruptive behavior; for two cases (Sven and

Ahmad), measurements were based on an active interval length of l = 10 seconds and 5

seconds for recording, while for the third case (Wendell), measurements were based on an

active interval length of l = 15 seconds with no time for recording. Observation sessions

lasted L = 15 minutes, implying that each reported datum was based on K = 60 intervals.

Figure 5.5 plots the partial interval data for each of the three cases.
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Figure 5.6. Forest plot of bounds for the incidence ratio, based on Dunlap
et al. (1994) data.

Based on descriptions of the types of disruptive behaviors exhibited by the three

students, it may be reasonable to assume that the average duration of each behavioral

event was fairly short, and therefore that primary interest is in the incidence of disruptive

behavior. To bound the log-incidence ratio, I assume that µ∗ < 10 seconds. Since the

active interval length varies across cases, I make separate assumptions about p∗ for each

case: for Sven and Ahmad I assume that at most p∗ = 15% of interim times are less than

l = 10 seconds, implying that zζ = 0.86; for Wendell, I assume that at most p∗ = 25%

of interim times are less than l = 15 seconds, implying that zζ = 0.80. Based on these

assumptions, I estimate bounds for the log-incidence ratio using LP2 ± zζ . I calculate an

approximate 95% confidence interval for the bounds using LP2 ±
(
zζ + 2

√
V P
L

)
.

Figure 5.6 depicts the estimated incidence ratio bounds and approximate confidence

intervals for each case in the study, using a graphic known as a forest plot; note that the

horizontal axis is on a log-scale.14 The estimated bounds are below 1 for all three cases,

14Forest plots are a commonly used graphical tool for representing effect sizes in meta-analysis. Figure
5.6 uses a modified version of the conventional forest plot to represent bounds estimates, rather than
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suggesting that the treatment may have reduced the incidence of disruptive behavior.

However, accounting for both sampling uncertainty and the identification-related uncer-

tainty, it is possible that the treatment may have had zero effect on Sven and Ahmad’s

problem behavior. The final row of the forest plot reports a fixed-effects meta-analysis of

the bounds, which yields an estimate of the bounds on the mean incidence ratio across

the cases in the study. Given that the 95% confidence interval for the average incidence

ratio is (0.03, 0.31), it is possible to conclude that, on average, the treatment reduces

the incidence of disruptive behavior by more than 69%, and possibly as much as 97%.

Even based on rather conservative assumptions regarding the average behavioral event

duration and probability of short interim times, it seems reasonable to conclude that this

treatment is very effective for these three cases.

5.4.2. Log-prevalence and log-prevalence odds ratios

Suppose that both lower and upper bounds on the average event durations can be estab-

lished, 0 < µ∗L ≤ µt ≤ µ∗U , and that FE(l|λt) < p∗ for known p∗, t = 0, 1. Let

zφ =


ln(µ∗L + l)− ln(µ∗L) + ln(µ∗U)− ln(µ∗U + (1− p∗)l) µ∗U <∞

ln(µ∗L + l)− ln(µ∗L) µ∗U =∞.

It follows from (5.4) that estimable bounds on the log-prevalence ratio are given by

(5.14) ln
(
πP1
)
− ln

(
πP0
)
− zφ ≤ ωφ ≤ ln

(
πP1
)
− ln

(
πP0
)

+ zφ.

point estimates. Here, green rectangles represent the estimated bounds for the prevalence ratio, while
whisker bars represent approximate 95% confidence intervals for the bounds; the latter are also reported
in the right margin of the figure. In conventional forest plots, the marker representing the point estimate
is often drawn so that its area is proportional to its precision, which has the effect of drawing attention to
more precisely estimated effect sizes. The modified forest plots that I present do not follow this practice.
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These bounds can be estimated from partial interval recording data by LP2 ± zφ, with

approximate variance V P
L . A parallel argument leads to bounds on the log-prevalence

odds ratio:

(5.15) ln
(
πP1
)
− ln

[
1− πP1 +

l

µ∗L

]
− ln

(
πP0
)

+ ln

[
1− πP0 +

(1− p∗)l
µ∗U

]
≤ ψ

≤ ln
(
πP1
)
− ln

[
1− πP1 +

(1− p∗)l
µ∗U

]
− ln

(
πP0
)

+ ln

[
1− πP0 +

l

µ∗L

]
.

Moment estimators for the lower and upper bounds in (5.15) are given by

ψ̂PL = ln
(
ȳP1
)
− ln

[
1− ȳP1 +

l

µ∗L

]
− ln

(
ȳP0
)

+ ln

[
1− ȳP0 +

(1− p∗)l
µ∗U

]
ψ̂PU = ln

(
ȳP1
)
− ln

[
1− ȳP1 +

(1− p∗)l
µ∗U

]
− ln

(
ȳP0
)

+ ln

[
1− ȳP0 +

l

µ∗L

](5.16)

with corresponding variance estimates

VψL =
s2
P0

(
1 + (1−p∗)l

µ∗U

)2

n0 (ȳP0 )
2
(

1− ȳP0 + (1−p∗)l
µ∗U

)2 +
s2
P1

(
1 + l

µ∗L

)2

n1 (ȳP1 )
2
(

1− ȳP1 + l
µ∗L

)2

VψU =
s2
P0

(
1 + l

µ∗L

)2

n0 (ȳP0 )
2
(

1− ȳP0 + l
µ∗L

)2 +
s2
P1

(
1 + (1−p∗)l

µ∗U

)2

n1 (ȳP1 )
2
(

1− ȳP1 + (1−p∗)l
µ∗U

)2 .

(5.17)

Example 4. Moes (1998) used a four-phase treatment reversal design to evaluate

the effect of providing choice-making opportunities on the disruptive behavior of four

children with autism, in the context of homework tutoring sessions. The investigators

measured disruptive behavior using partial interval recording with l = 10 second active

intervals, 5 seconds for recording, and K = 80 intervals per observation session. Each

case was measured for a total of n0 = 10 sessions in the no-choice condition and n1 = 10
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Figure 5.7. Percentage of partial intervals with disruptive behavior for four
cases from Moes (1998). Red circles indicate no-choice condition; blue
diamonds indicate choice condition.

sessions in the choice condition; each condition was introduced across two phases, using

a randomized ABAB/BABA design. Figure 5.7 displays the data from this study.

Suppose that, based on experience with the types of disruptive behaviors exhibited

by the study participants, the average length of disruptive behaviors can be established

as greater than µ∗L = 10 seconds and less than µ∗U = 60 seconds. Also suppose that at

most p∗ = 20% of interim times are less than 10 seconds. It then follows from (5.14) that

the log-prevalence ratio is within zφ = 0.57 of the response ratio based on partial interval

recording means.15 Table 5.5 reports estimated bounds on the log-prevalence ratio for

15If only a lower bound on mean event duration can be established (i.e., µ∗U = ∞), then the half-width
of the bound increases to zφ = 0.69.
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Table 5.5. Estimated effect size bounds for Moes (1998)

,

Log-prevalence ratio ωφ Log-prevalence odds ratio ψ Log-interim ratio ωλ

Case Estimate 95% CI Estimate 95% CI Estimate 95% CI

Carl (-1.39,-0.25) (-3.20,1.55) (-1.90,-0.69) (-3.75,1.18) (-0.93,-0.87) (-2.81,0.97)
Charles (-3.76,-2.63) (-5.23,-1.16) (-4.36,-3.04) (-5.88,-1.54) (-3.60,-3.39) (-5.15,-1.89)
Chuck (-1.59,-0.45) (-2.60,0.56) (-1.91,-0.61) (-3.01,0.49) (-1.24,-1.13) (-2.39,-0.05)
James (-2.93,-1.79) (-4.85,0.13) (-3.94,-2.50) (-5.92,-0.52) (-3.02,-2.67) (-5.03,-0.71)

FE meta-analysis (-2.24,-1.10) (-2.93,-0.41) (-2.78,-1.49) (-3.51,-0.76) (-2.03,-1.84) (-2.78,-1.13)

each of the four cases, along with approximate 95% confidence intervals (CI) calculated

as LP2 ±
(
zφ + 2

√
V P
L

)
. The final row of the table reports fixed-effects meta-analyses

based on the end-points of the bounds. The average log-prevalence across the four cases

is estimated to be between -2.24 and -1.10, equivalent to a 67-89% reduction in disruptive

behavior. Based on the confidence interval of (-2.93,-0.41) for the average-log prevalence,

which accounts for sampling uncertainty in the bounds estimates, the treatment leads to

a reduction in disruptive behavior of 33-95%. While it is apparent from this analysis that

the treatment is beneficial, considerable uncertainty remains about the magnitude of the

average effect.

The third and fourth columns of Table 5.5 reports estimated bounds
(
ψ̂PL , ψ̂

P
U

)
and cor-

responding confidence intervals for the log-prevalence odds ratio, based on the Moes (1998)

data. Approximate 95% confidence intervals are calculated as
(
ψ̂PL − 2

√
VψL, ψ̂

P
U + 2

√
VψU

)
.

Based on a fixed-effects meta-analysis, and accounting for the uncertainty in the bounds

estimates, the treatment leads an average log-prevalence odds of between -3.51 and -0.76.

The practical implications are much the same as with the other metric: the treatment

leads to reductions in disruptive behavior, but there remains uncertainty about the mag-

nitude of the average reduction.
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5.4.3. Log-interim ratio

The first two bounding approaches that I have described make assumptions only about

the average event duration and the probability of short interim times, but not about the

full distribution of event durations or interim times. Alternately, one could entertain

a stronger set of distributional assumptions about the behavior stream that will yield

narrower identification regions. For instance, S. A. Altmann and Wagner (1970) proposed

analyzing partial interval recording data under the assumptions that event durations are

negligible and that interim times follow an exponential distribution (i.e., a Poisson point

process); they showed that these assumptions point-identify the average interim time,

though estimators based on this model are quite sensitive to violations of the assumptions

(Fienberg, 1972). I now consider a related but somewhat more general set of assumptions,

which yield relatively narrow bounds for the log-interim ratio ωλ.

Suppose that the intervention does not change the average event duration, so that

µ0 = µ1. Further suppose that the interim times in each treatment condition follow

exponential distributions, so that FE (t|λt) = 1 − exp (−t/λt), t = 0, 1. If πP0 > πP1 , it

then follows that

(5.18) logit
(
πP1
)
− logit

(
πP0
)
< ωλ < cll

(
πP1
)
− cll

(
πP0
)
,

where cll() denotes the complementary-log-log function, cll(x) = ln [− ln(1− x)]; similarly,

if πP0 ≤ πP1 , then

(5.19) cll
(
πP1
)
− cll

(
πP0
)
≤ ωλ ≤ logit

(
πP1
)
− logit

(
πP0
)
.
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Proof is given in Appendix B.3. The log-odds ratio, logit
(
πP1
)
− logit

(
πP0
)
, can be esti-

mated using the moment estimator ψ̂P as given in (5.10) or the bias-corrected estimator

ψ̂P2 as given in (5.12); its approximate variance is given by (5.11) with p = P . The

complementary-log-log ratio can be estimated using the moment estimator

(5.20) κ̂P = cll
(
ỹP1
)
− cll

(
ỹP0
)

or the bias-corrected estimator

(5.21) κ̂P2 = cll
(
ỹP1
)
+

s2
P1

[
ln
(
1− ỹP1

)
+ 1
]

2n1 (1− ỹP1 )
2

[ln (1− ỹP1 )]
2−cll

(
ỹP0
)
−

s2
P0

[
ln
(
1− ỹP0

)
+ 1
]

2n0 (1− ỹP0 )
2

[ln (1− ỹP0 )]
2 .

The variance of either estimator is approximately

(5.22) V P
κ =

s2
P0

n0 (1− ỹP0 )
2

[ln (1− ỹP0 )]
2 +

s2
P1

n1 (1− ỹP1 )
2

[ln (1− ỹP1 )]
2 .

Example 4 (continued). Consider again the study by Moes (1998), which used 10-

second partial interval recording. The final two columns of Table 5.5 reports estimated

bounds and 95% confidence intervals for the log-interim ratio, under the assumptions

that the treatment does not affect the average duration of disruptive behaviors and that

the interim times are exponentially distributed. Under the assumption that µ0 = µ1,

the log-interim ratio is directly comparable to the log-prevalence odds ratio. Comparing

the confidence intervals for the average effect size as estimated using fixed-effects meta-

analysis, it can be seen that the estimated bounds for the log-interim ratio are considerably

narrower than those for the log-prevalence odds ratio: the former have a width of only
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0.18, compared to a width of 1.29 for the latter. However, this gain in precision comes

entirely from reliance on additional distributional assumptions.

5.5. Application: Shogren, Faggella-Luby, Bae, & Wehmeyer (2004)

The examples presented in previous sections are all based on studies included in a sys-

tematic review by Shogren et al. (2004). This section presents a complete meta-analysis of

the studies included in the review, in order to illustrate the extent to which conclusions are

sensitive to identifying assumptions. I examine four sets of successively stronger models,

with the goal of summarizing the average effect of providing choice-making opportunities

to individuals who display problem behavior. In all four models, I focus on prevalence as

the most practically relevant dimension of problem behavior.

Recall from Table 5.1 that the studies used a variety of measurement procedures, in-

cluding event counting, continuous recording, momentary time sampling, interval record-

ing, and other procedures. Effect sizes based on each procedure involve distinct assump-

tions, which I detail separately. I exclude from the analysis the three studies (including

four cases) that used idiosyncratic measurement procedures (Bambara et al., 1995; Cole

& Levinson, 2002; Dibley & Lim, 1999), from which measurement-comparable effect sizes

cannot be derived. I also excluded one study with a single case (Peterson et al., 2001)

that reported a functional assessment but did not use an evaluation design. Of the cases

measured using interval recording, only one (Kern et al., 2001, “Kelly”) was measured

with whole interval recording. With this case, a whole interval recording procedure was

used to measure task engagement. For purposes of calculating effect sizes, I re-coded the

data as a partial interval recording measure of task dis-engagement.
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5.5.1. Effect size assumptions

Model 1 uses the log-prevalence ratio to quantify changes in prevalence. For cases mea-

sured using continuous recording and momentary time sampling, effect size estimates were

calculated using LC2 or LM2 , as given in (5.9). For cases measured using event counting, I

assume that the intervention does not alter the mean event duration (µ0 = µ1), so that

the log-response ratio, estimated by LE2 , is equivalent to the log-prevalence ratio. Finally,

for cases measured using interval recording, I assume that the average event duration in

each phase is greater than µ∗L = 10 seconds, and estimate bounds for the log-prevalence

ratio based on (5.14).

Model 2 incorporates all of the assumptions of Model 1, while imposing an additional

assumption for cases measured using interval recording. For these cases, active interval

lengths ranged from l = 10 seconds to 30 seconds. I assume that the average event dura-

tion in each phase is less than µ∗U = 60 seconds and that the probabilities of interim times

less than 10, 15, or 30 seconds are 15%, 25%, and 50%, respectively. These additional

assumptions leads to narrower bounds for the log-prevalence ratio.

Model 3 uses the log-prevalence odds ratio to quantify changes in prevalence, while

retaining all of the assumptions of Model 2. An additional assumption is needed in

order for the effect sizes estimated using event counting to be directly comparable to

log-prevalence odds ratio estimates. Namely, I assume that the average event duration in

each treatment condition is close to zero, so that proportionate changes in incidence are

approximately equal to proportionate changes in interim times. Thus, effect sizes for cases

measured by event counting are estimated using LE2 . For cases measured using continuous

recording or momentary time sampling, the log-prevalence odds ratio is estimated using



198

ψ̂C2 or ψ̂M2 , as given in (5.12). For cases measured using interval recording, effect size

bounds are estimated using (5.16).

Model 4 also uses the log-prevalence odds ratio, but makes different assumptions

for cases measured by interval recording. Rather than assuming that the average event

durations lie in a particular interval, I assume instead that the average event duration is

not affected by intervention, so that µ0 = µ1; this assumption implies that the interim

ratio is equivalent to the log-prevalence odds ratio. I also assume that interim times

are exponentially distributed. Together, these assumptions lead to bounds for the log-

prevalence odds ratio, which I estimate as described in Section 5.4.3. For event counting,

continuous recording, and momentary time sampling, log-prevalence odds ratio estimates

are formed as in the third model.

5.5.2. Meta-analytic model

Having described the assumptions behind how I calculate effect size estimates, I now

describe the modeling assumptions I use to meta-analyze those effect sizes. Typical meta-

analytic methods deal with point estimates of effect sizes, rather than bounds estimates.

I follow an approach of separately meta-analyzing the lower and upper effect size bounds.

For the few cases and studies where direct measures were used, point estimates of effect

size are treated as bounds of zero width, and so included in both the lower- and upper-

bounds models.16 Let ZL
ij, Z

U
ij denote estimated lower and upper bounds on the effect size

16Another approach to synthesizing a collection of studies with some point estimates (from direct measure-
ment procedures) and some bound estimates (from interval recording procedures) would be to separately
meta-analyze the point estimates and the bounds estimates. I do not implement this strategy here due to
the limited number of studies with cases measured using methods other than interval recording. Only four
independent studies used a direct measurement procedure, and in only one of these were multiple cases
available; estimation of multiple variance components would be very tenuous with this configuration.
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for case j from study i; for point estimates, ZL
ij = ZU

ij . Let V b
ij, b ∈ {L,U} be the estimated

sampling variance of these estimates. Following Van den Noortgate and Onghena (2008),

I assume that that the estimates follow a multi-level model in which

(5.23) Zb
ij = γb + ui + νij + εij,

for b ∈ {L,U}, where γb is the average effect size bound across cases and studies, ui is a

study-level deviation from the average bound, νij is a case-level deviation from the bound

for study i, and εij is the sampling error of the estimated effect size bound for case j

in study i. I assume that all errors are independently distributed, with ui ∼ N (0, τ 2
b ),

νij ∼ N (0, σ2
b ), and εij ∼ N

(
0, V b

ij

)
.

I estimate the variance components τ 2
b , σ

2
b and the average effect size γb via restricted

maximum likelihood. Denoting the estimated bound for the average effect size as γ̂b, the

corresponding model-based variance estimate as V b, and the upper 0.025 critical value

from a t-distribution with 8 degrees of freedom as t8, I construct confidence intervals for

the average effect size bounds by
(
γ̂L − t8

√
V L, γ̂U + t8

√
V U
)

.17

This modeling approach leads to estimated bounds for the average effect size (γ̂L, γ̂U).

However, it is important to note that the estimates of within- and between-study het-

erogeneity τ̂ 2
b , σ̂

2
b cannot be interpreted as bounds on the true heterogeneity. Instead,

estimated variance components serve only as rough indicators of heterogeneity. I know of

17In multi-level meta-analysis, it is prudent to examine cluster-robust variance estimates in addition to the
model-based variance estimates. The former are asymptotically consistent (as the number of independent
studies increases) even if the model for variance components is mis-specified (Hedges, Tipton, & Johnson,
2010). In the present example, the cluster-robust standard errors are nearly identical to the model-based
standard errors, though slightly smaller.
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no method for determining bounds on variance components in this context; a more rig-

orous analysis of variance components based on estimated effect size bounds will require

further methodological development.

5.5.3. Results

Figures 5.8a through 5.9b display forest plots of the estimated effect size bounds under

Models 1 through 4, respectively.18 Table 5.6 reports estimated bounds and 95% con-

fidence intervals for the average effect size under each model, along with estimates of

between-study heterogeneity τ̂ 2 and within-study heterogeneity σ̂2.

Models 1 and 2 use the log-prevalence ratio as the effect size metric. Based on the

assumptions of Model 1, the average log-prevalence ratio is estimated to be between -1.85

and -0.67, corresponding to a reduction in the prevalence of problem behavior of between

49% and 84%; the 95% confidence interval of -2.53 to -0.09 corresponds to a reduction in

prevalence of between 9% and 92%. The range of the estimated bounds is wide due to the

large number of cases that were measured using partial interval recording. For many of the

cases measured using partial interval recording, the estimated bounds on the individual

prevalence ratio are very wide; note in particular that for 6 cases, the estimated bounds

includes a prevalence ratio of one, which corresponds to no intervention effect, while for

an additional 8 cases, the confidence interval includes unity. Based on the upper bounds

of the individual effect size estimates, the total heterogeneity of individual effect sizes

(including variation both within and between studies) is estimated to be τ̂ 2
U + σ̂2

U = 1.04,

18See footnote 14 on the construction of these modified forest plots.
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Table 5.6. Meta-analysis of studies from Shogren et al. (2004)

Estimate 95% CI τ̂ 2 σ̂2

Effect size Model (L, U) (L, U) L U L U

Prevalence

ratio ωφ
1 (-1.85, -0.67) (-2.53, -0.09) 0.42 0.18 0.70 0.87
2 (-1.74, -0.77) (-2.38, -0.22) 0.35 0.14 0.70 0.85

Prevalence
odds ratio ψ

3 (-2.14, -0.95) (-2.89, -0.34) 0.37 0.02 1.31 1.59
4 (-1.58, -1.42) (-2.19, -0.86) 0.06 0.00 1.39 1.29

which indicates a substantial level of variability across cases and studies.19 Whether based

on the lower- or upper-bound meta-analysis, it appears that more of the heterogeneity is

within studies than between studies.

Model 2 adds additional assumptions regarding cases measured using partial interval

recording; specifically, Model 2 assumes that the average event duration is less than 60

seconds and that at most a certain percentage of interim times are less than the active

interval length used for measurement. The additional assumptions reduce the width of

the estimated bounds by 0.21 and the width of the confidence interval by 0.27.20 Under

Model 2, the 95% confidence interval for the average log-prevalence ratio corresponds to

a reduction in prevalence of between 20% and 91%. The substantive conclusion is much

the same as under Model 1: on average, the treatment reduces problem behavior, but the

magnitude of the average reduction remains uncertain. Just as in Model 1, there appears

to be substantial heterogeneity of treatment effects across cases and studies, though it

19Suppose that the average log-prevalence ratio is -0.67 (corresponding to a reduction of about 50%).
Total heterogeneity of τ2 + σ2 = 1.04 implies that a quarter of the population experiences a reduction in
prevalence of over 70% while another quarter of the population experiences an increase in prevalence of
1% or more.
20The width of the confidence interval is reduced by more than the width of the estimated bounds because
the estimated between-study variation τ̂2 is smaller under Model 2, which leads to a reduced standard
errors on the estimated bounds for the average effect size.
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should be borne in mind that the estimated variance components do not account for the

use of bounds rather than point estimates.

Model 3 relies on the same assumptions regarding partial interval recording as does

Model 2, but uses the log-prevalence odds ratio as the effect size metric. Based on

the assumptions of Model 3, the average log-prevalence odds ratio is estimated to be

between -2.14 and -0.95 (95% confidence interval: [-2.89, -0.34]). Odds ratios can be

difficult to interpret; as an aid to interpretation, it is helpful to provide translations into

proportionate reductions in prevalence at benchmark levels of baseline prevalence.21 For

a baseline prevalence of φ0 = 0.50, the confidence interval for the average log-prevalence

odds ratio corresponds to a reduction of between 17% and 90%, which is quite close to the

confidence interval from Model 2; for a baseline prevalence of φ0 = 0.75, the corresponding

reduction is between 9% and 81%. Differences between Model 2 and Model 3 are due to

the change of metric, and so the results are not on the same scale. However, the I2

statistic (Higgins & Thompson, 2002) can be used to compare heterogeneity across the

two models because it is a scale-free measure.22 The I2 statistics from Model 3 are both

I2
L = I2

U = 0.84 and slightly larger than those from Model 2 (where I2
L = 0.79, I2

U = 0.78).

21For baseline prevalence φ0 and log-prevalence odds ratio ψ, the proportionate reduction in prevalence
is given by

exp
(
ωφ
)
− 1 =

exp(ψ)

1− φ0 [1− exp(ψ)]
− 1.

22In a basic meta-analysis, I2 is a function of Cochran’s Q statistic and the total number of studies.
However, this simple relationship does not hold in multi-level meta-analysis, where multiple components
of true variation between effects must be estimated. I therefore calculate I2 using

I2b =
τ̂2b + σ̂2

b

τ̂2b + σ̂2
b + V̄b

,

where τ̂2b and σ̂2
b are the restricted maximum likelihood estimates and V̄b is the simple mean of the effect

size variances V bij .
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This suggests that the log-prevalence ratio metric offer a small advantage for modeling

the variability of individual effect sizes, though the difference is slight.

Model 4 is based on different assumptions regarding partial interval recording than

those used in Model 3. Under Model 4, the estimated bound for the average log-prevalence

odds ratio is -1.58 to -1.42 (95% confidence interval: [-2.19,-0.86]). For a baseline preva-

lence of φ0 = 0.50, the confidence interval corresponds to proportionate reductions in

prevalence of between 51% and 59%; for a baseline prevalence of φ1 = 0.75, the cor-

responding reduction is between 46% and 62%. The stronger assumptions of Model 4

yield an estimated bound for the average log-prevalence odds ratio that is considerably

narrower, having a width of 0.16 logits, compared to 1.19 logits under Model 3; the cor-

responding confidence interval has a width of 1.32 logits, compared to 2.55 logits under

Model 3. Also as compared to Model 3, there is less difference in the variance component

estimates when based on the lower versus the upper bounds from Model 4. When based

on the lower bound estimates, the estimated between-study variance is small (τ̂ 2 = 0.06)

while the estimated within-study variance remains fairly large (σ̂2 = 1.39).23

5.5.4. Discussion

I have presented four models for synthesizing case-level estimates of the effect of providing

choice-making opportunities on the prevalence of individuals’ problem behavior, using

data from studies identified by Shogren et al. (2004). A major feature of these data is

23Total heterogeneity is also large. For an average log-prevalence odds ratio of -1.58, total heterogeneity
of τ2 + σ2 = 1.45 implies that a quarter of the population has a log-prevalence odds ratio of less than
-2.39 (a reduction of more than 70% for baseline prevalence φ0 = 0.50) while another quarter of the
population has a log-prevalence odds ratio of more than -0.76 (a reduction of less than 22% for baseline
prevalence φ0 = 0.50).
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the large number of cases measured using partial interval recording, which is not a direct

measure of prevalence. Each model entertained a different set of assumptions in order

to identify bounds for a meaningful, measurement-comparable effect size that could be

estimated from interval recording data. Models 1, 2, and 3 lead to very similar inferences

for the average effect of choice-making; across all three models, the treatment is, on

average, effective in reducing the prevalence of problem behavior, but the magnitude

of the average reduction is imprecisely estimated. The lack of precision is due in part

to heterogeneity of effects across cases, but also due to the wide bounds on individual

treatment effect estimates that are based on partial interval recording data. Model 4

presents a much more precise picture than the others, but this precision is based on

strong modeling assumptions. The results reported for Model 4 should be interpreted in

light of the assumptions, and with considerable caution.

The findings based on Models 1 through 3 contrast somewhat with the conclusions

reached by Shogren et al. (2004), who inferred based on the same data that ”providing

choice opportunities resulted in a clinically significant reductions” (p. 229) in problem be-

havior. Shogren et al. (2004) used as effect size measures the percentage of non-overlapping

data and the percentage of zero data, and synthesized those effect sizes by taking simple

averages. They also performed several sub-group analyses, using Kolmogorov-Smirnov

tests and Kruskal-Wallis analysis of variance procedures for identifying statistically sig-

nificant differences between groups. I do not yet have access to the covariate information

necessary to re-produce these subgroup analyses, but plan to do so in future work. I

anticipate that this exercise may not be very informative because it will involve contrasts
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between bounds on average treatment effects in each subgroup, leading to even wider

bounds for the difference in effects.

Further analyses would be possible if a larger set of studies could be identified that

included a greater variety of measurement methods. Among those identified by Shogren et

al. (2004), only 4 studies (9 cases) used a measurement method other than interval record-

ing; only three cases were measured using event counting, only one with momentary time

sampling, and only five with continuous recording (all from a single study). As a result,

there is insufficient data to examine whether there are differences in average effect sizes

for cases measured by different methods. However, it may be possible to carry out such an

analysis in other applications, and meta-analysts are encouraged to do so. Although the

point of using measurement-comparable effect sizes is to reduce irrelevant operational het-

erogeneity and put different measurement procedures on a comparable basis, it is prudent

to test whether the exercise has succeeded. Residual differences between measurement

methods may indicate violation of one’s modeling assumptions, which can in turn lead

the analyst towards more refined assumptions and signal caution in the interpretation of

effect sizes averaged across measurement procedures.

5.6. General discussion

In this chapter, I have presented an alternating renewal process model for free-operant

behavior that can be used to describe data collected via several common measurement

procedures. I used the model to define measurement-comparable effect size metrics and

proposed some estimators that are applicable under a simple between-phase model. When

data are collected using a direct measurement procedure, several of the estimators are
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special cases of the log-response ratio, a well-known effect size used in other areas of

meta-analysis (Hedges et al., 1999). However, data based on interval recording procedures

present special difficulties because they cannot be interpreted as direct measurements of

either prevalence or incidence. I have proposed several different approaches to estimating

measurement-comparable effect sizes based on interval recording data, all of which involve

further modeling assumptions that may be difficult to verify in practice, and all of which

yield bounds rather than point estimates.

A working meta-analyst, interested in synthesizing evidence from single-case studies

of free-operant behavior, might sensibly question the need for an elaborate, notation-

laden model to define effect sizes. I see three advantages to this model. First, using

a model that captures the essential features of the outcome measurement procedures

improves the interpretability of effect sizes defined with respect to it. The effect sizes that

I have proposed are defined in terms of prevalence and incidence, both readily understood

aspects of a behavior. In contrast, other effect size proposals such as the within-phase

standardized mean difference or the percentage of non-overlapping data do not correspond

closely with interpretable constructs. Instead, both of these measures are sensitive to the

precision of the measurements on which they are based, and thus to operational aspects

of the study such as the chosen recording procedure, the length of observation sessions,

and (for interval recording procedures) the active interval length.

Second, a measurement-comparability model is all the more necessary when dealing

with measurements that are difficult to interpret. Given that interval recording procedures

are widely used for measurement of free-operant behavior, meta-analytic methods for

single-case research cannot simply ignore them. Consider that, in the application to
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studies of choice-making interventions, interval recording was used with two thirds of

the cases to be synthesized. Taking a naive approach by treating interval recording

data just as other data would compromise the construct validity of the synthesis. On

the other hand, restricting the meta-analysis to cases measured using procedures other

than interval recording would drastically reduce the sample size and possibly compromise

external validity. Methods are therefore needed that retain cases measured using interval

recording while also making use of interpretable, measurement-comparable effect sizes.

Third, use of a measurement-comparability model has implications for current and

future research practices. Effect sizes defined under such a model allow meta-analysts

to formulate research questions using more exact terms, such as whether an intervention

affects the prevalence of a behavior, the incidence of a behavior, or both. As I noted in

Section 5.2.1, it will rarely be possible to estimate theoretically interesting effect sizes such

as the log-duration ratio and log-interim ratio based only on data collected from published

graphs. However, such limitations do not pertain to primary researchers planning future

studies; data collection procedures and reporting practices could certainly be adjusted so

that effects on event duration and interim time could be separately estimated. Similarly,

meta-analytic methods that account for the relative precision of different measurement

procedures (and, in the case of interval recording, their validity) provide a rational guide

for the design of new research. Researchers planning a new study can assess the state

of existing research to identify outcomes or sub-groups where average effect sizes are

imprecise and choose measurement methods, designs, and sample sizes accordingly.
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5.6.1. Choosing an effect size

Several factors are relevant when choosing an effect size metric to use for summarizing the

results of a single-case study or meta-analyzing the results of several studies. I consider

both purposes in turn. For summarizing the results of a study on a single case, the choice

of effect size should follow directly from the goals of the study. Primary investigators

should select both a measurement procedure and an effect size based on which dimension

of a case’s behavior is of theoretical or practical concern. If prevalence is the primary

dimension of interest, continuous recording or momentary time sampling is recommended,

and the choice between the log-prevalence ratio or log-prevalence odds ratio can likely be

made based on which metric is more easily interpreted. Similarly, if incidence is the

primary concern, event counting is recommended, together with the log-incidence ratio as

a summary effect size.24 If an investigator chooses to use an interval recording method,

they should nonetheless choose (and defend the choice of) a dimension of behavior that is

of primary interest, then summarize their results using an effect size appropriate for that

dimension.

In the context of meta-analyzing several studies, the choice of a summary effect size

will be limited to those that can be estimated from the available data. If the set of in-

cluded studies used varying measurement procedures, then it may be necessary to use

several different effect sizes and to evaluate whether the those effect sizes are directly

comparable, on the basis of the assumptions described in Section 5.2.5. For example,

if some studies measure incidence with an event counting procedure while the remain-

der measure prevalence with continuous recording, each subset of studies might first be

24If both prevalence and incidence are of interest, the most robust approach is to use an electronic system
for continuous recording, such as the MOOSES software (Tapp, Wehby, & Ellis, 1995).
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summarized and meta-analyzed separately; the meta-analyst might then assess whether

it is reasonable to assume that average event durations can be treated as constant for the

studies that use event counting, in which case a combined meta-analysis of both subsets

would be warranted.

If the preponderance of included studies focus on prevalence, then the meta-analyst

must further determine whether to use the log-prevalence ratio or the log-prevalence odds

ratio. In this circumstance, it may be possible to choose an effect size metric by comparing

the empirical fit of the meta-analytic models applied to each effect size, with preference

given to the effect size metric that exhibits less heterogeneity. This approach was used by

Engels, Schmid, Terrin, Olkin, and Lau (2000) for meta-analysis of medical studies with

binary outcomes (see also Deeks, 2002). These authors found that it was often difficult

to distinguish between models based on risk ratios versus those based on odds ratios,

particularly when effects were small and the number of studies was limited. In applying

this approach to the studies of the effects of choice-making problem behavior, as identified

by Shogren et al. (2004), the ability to distinguish between models was hampered not by

small effects, but by the limitations of partial interval recording data, which necessitated

the use of effect size bounds. However, other single-case meta-analyses, particularly those

in which partial interval recording is less common, might have comparatively greater power

for determining the more homogeneous effect size metric, due both to the availability of

case-level data and the potential for very large effects on prevalence.
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5.6.2. Limitations and Extensions

The models and methods presented in this chapter have several limitations that should

be noted, related mostly to the modeling assumptions upon which I have relied. Here I

address, in turn, assumptions related to the within-session model, between-session model,

effect sizes, and meta-analytic methods. I also note possible extensions and areas for

future research.

The equilibrium alternating renewal process model described in Section 5.1.2 is general

in the sense that only first-moment assumptions are specified regarding event durations

and interim times. However, the assumption that the process is in equilibrium may

strike some as unrealistic, particularly when observation sessions coincide with another

event, such as the beginning of math class, or entrances into a novel setting, such as a

therapist’s office. Others may object that the model does not account for relationships

between behavioral events and environmental contingencies, which are of great interest in

behavior-analytic theories. Regarding both objections, I can offer no response but that

available data (in the form of published graphs) do not provide sufficient information to

model the aspects of interest. Without the equilibrium assumption, all of the measurement

procedures that I have described become somewhat sensitive to initial conditions and to

the length of observation sessions, but the meta-analyst will not have information about

these dimensions. The equilibrium assumption implies that the process is uniform over

the course of a session, which is consistent with how the recorded data generated by

various measurement procedures are typically summarized into a single reported datum.

Next, I have used the simplest possible between-session model to describe change

in behavior over time. The stable-phase model allows for neither trends in the process
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over time nor for serial dependence of repeated measurements, both of which are prime

concerns in quantitative single-case research methodology (Horner et al., 2012; Maggin,

Swaminathan, et al., 2011; Wolery et al., 2010). Extensions to the between-session model

are possible and will be described in Chapter 6. Even so, the simple stable-phase model

may be plausible in many applications, particularly for designs with very short phase

lengths.

There are two shortcomings to the case-level effect size metrics that I have described.

The goal of some behavioral interventions is complete elimination of an undesirable behav-

ior, and a researcher or meta-analyst may be interested in the probability that elimination

will be achieved. If the complete absence of a behavior is achieved in one treatment con-

dition, prevalence or incidence will be equal to zero and effect size metrics such as the

log-prevalence ratio, log-prevalence odds ratio, and log-incidence ratio will have a value

of negative infinity, making them impossible to analyze using conventional meta-analytic

models. Specialized meta-analytic models and methods will be needed in such contexts.

The other short-coming of the individual-level effect size metrics as proposed is that

they are not design-comparable in the sense of Section 1.1.1, and thus not useful for

syntheses containing both single-case and group research. To address this, the general

framework outlined in Chapter 2 could be applied to define design-comparable analogs of

the effect sizes described in this chapter. An alternative approach would be to develop

methods for bounding averages of individual-level effect sizes based on data from group

designs. The latter approach is closely related to methods for detecting unit-treatment
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interactions in clinical trials (Gadbury & Iyer, 2000; Gadbury, Iyer, & Albert, 2004; Poul-

son, Gadbury, & Allison, 2012). Future work on either approach will need to be developed

in the context of specific applications.

A final, important limitation of this work is that the key assumptions have yet to be

vetted by applied researchers who have experience with measurement procedures for free-

operant behavior. Particularly for analysis of interval recording data, I have suggested

several different approaches that strike me as reasonable and useful, but those with more

direct experience with application will be in a better position to judge their plausibility

and utility. For example, in the application described in Section 5.5, I have employed as-

sumptions uniformly across cases measured using partial interval recording. A researcher

with knowledge of the individuals or classes of behavior might be able to develop assump-

tions that are more carefully tailored to each case. Similarly, a better understanding of

how researchers choose between alternative measurement procedures would be helpful in

assessing which assumptions regarding those procedures are most reasonable. This final

limitation speaks to the need for–and importance of–greater collaboration between ap-

plied single-case researchers and statistical methodologists, calls for which have also been

made by J. M. Campbell and Herzinger (2010) and others.
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CHAPTER 6

Generalized linear models for free-operant behavior

The effect size estimators proposed in Chapter 5 are motivated by an equilibrium

alternating renewal process (ARP) for the stream of free-operant behavior observed during

the course of an observation session, based on which the properties of several different

types of recorded data can be derived. They are further motivated by a between-session

model in which the behavior stream process is stable, leading to reported data that

are independent and identically distributed within each treatment condition. In this

chapter, I consider models that relax the stability assumption in two ways: by allowing

for deterministic time trends and by allowing for stochastic, possibly serially correlated

variation in the parameters of the behavior stream process. Both of these extensions

involve the framework of quasi-likelihood for generalized linear models. I focus on the

types of reported data that are direct measures of behavioral parameters, namely event

counting (a direct measure of incidence) and continuous recording and momentary time

sampling (both direct measures of prevalence); applications to interval recording methods

remain a topic for future work. I also limit consideration to one effect size metric for each

of these measurement procedures: for eventing counting, I consider the log-incidence ratio;

for continuous recording and momentary time sampling, I consider the log-prevalence odds

ratio. I do not examine the log-prevalence ratio for the latter types of data because it is

difficult to specify sensible data-generating models for the log-prevalence.
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The central challenges in extending the model from the previous chapter stem from

a lack of full probability distributions for the types of reported data under consideration

that are both plausible and tractable. Under the posited ARP, the first moments of

data generated by direct measurement procedures depend only on the first moments

of the event durations and interim times that constitute the latent behavior stream.

However, full probability distributions for the recorded data will depend on the event

duration distribution FD and the interim time distribution FE, about which little is known.

Moreover, even if these could be specified, the resulting probability distributions for the

recorded data would typically be cumbersome if not entirely intractable.

The quasi-likelihood framework, described by Wedderburn (1974; see also McCullagh,

1983), is an estimation criteria based on models for the mean and variance of the outcome,

rather than the full distributional form. For example, consider the stable phase model

from the previous chapter. For outcome data based on direct measures, r ∈ {E,C,M},

denote E
(
Y r
j

)
= πrj . The model can then be written as

gr
(
πrj
)

= β0 + β1Tj,

Var
(
Y r
j

)
= [γ0(1− Tj) + γ1Tj]Vr

(
πrj
)
,

(6.1)

j = 1, ..., n, where gr is a known link function and Vr is a known function expressing the

relationship between the mean and the variance, both for an outcome of type r. A logit

link gr(x) = ln(x)− ln(1−x) with continuous recording data or momentary time sampling

data leads to a model in which β1 is the log-prevalence odds ratio; taking gr(x) = log(x)

with event counting data leads to a model in which β1 is the log-incidence ratio.
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As written in (6.1), the parameter γ0 measures the dispersion of the outcome in the

baseline phase above or below what would be expected for a given variance function Vr;

similarly, γ1 measures dispersion in the treatment phase. Of course, for this trivial model,

it is not strictly necessary to use a variance function Vr because, with only two possible

values of the mean, Vr is not identified; in fact, the variance model can be written more

simply as Var
(
Y r
j

)
= σ2

0(1 − Tj) + σ2
1Tj. This is why mean-variance relationships were

not a concern in the previous chapter. However, in the more general models considered

in this chapter, it will be necessary to consider how Vr should be specified.

A natural way to extend (6.1) is to add further covariates to the mean specification,

such as for describing time trends. Here, the primary challenges in applying the quasi-

likelihood framework are in determining how to choose a variance function and how to

estimate the sampling variance of the effect size estimate. I illustrate this modeling

extension and address these challenges in Section 6.1.

One way to introduce serial dependence into a model such as (6.1) is by adding another

source of error to the mean specification–that is, by allowing stochastic variation in the

parameters of the behavior stream. If these errors are serially dependent, so to will

be the reported outcome data, resulting in what Cox (1981) termed a parameter-driven

time series model. For outcome data in the form of counts, parameter-driven models

have been widely studied, including notably by Zeger (1988) and Davis, Dunsmuir, and

Wang (2000). For outcome data in the form of proportions (as produced by continuous

recording and momentary time sampling), parameter-driven models have been studied by

Song and Tan (2000), Molenberghs and Verbeke (2005, Chp. 22), and Czado and Song

(2007), among others. Models with this feature create two additional challenges for effect
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size estimation in single-case studies. The first is definitional: how should effect sizes be

defined under such models? Beyond this, how should effect sizes be estimated? I consider

parameter-driven models involving serial dependence in Sections 6.2 and 6.3. Section 6.4

demonstrates both extensions in applications and Section 6.5 concludes.

In both of these extensions, the main advantage of adopting a quasi-likelihood ap-

proach is that its modeling assumptions are reasonable and concordant with the current

state of knowledge about the processes under study. Absent more fine-grained, within-

session data, it seems judicious to use methods that do not involve committing to specific

distributional assumptions about the behavior stream. However, quasi-likelihood also

carries a serious caveat: the performance and properties of estimators in this framework

are justified on the basis of asymptotic consistency arguments, rather than exact, small-

sample results. Asymptotic consistency is rather cold comfort for the applied single-case

researcher or the meta-analyst who must deal with limited available data. I thus rely on

small-sample simulation results to make initial assessments regarding the performance of

the methods described in the following sections.

6.1. Defining and estimating models with time trends

The mean specification from (6.1) can be extended to capture time trends in the

behavior stream process. In Chapter 3, I considered a case-level model for the multiple

baseline design with continuous, interval-scale outcome measures; model (3.2) included

a baseline time trend, a treatment effect, and a treatment-by-trend interaction term.

Following a specification similar to (3.2), the mean of the outcome process can be modeled
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as

(6.2) gr
(
πrj
)

= β0 + β1Tj + β2 × j + β3

j∑
k=1

Tk.

The coefficients in this model have interpretations very similar to those in (3.2), but their

units depend on the choice of link function. When the outcome is a measure of prevalence

and gr is a logit link, the baseline level β0 is in log-prevalence-odds units; the initial

treatment effect β1 is the difference in log-prevalence-odds (the log-prevalence odds ratio)

immediately upon introduction of the treatment; the baseline trend β2 is the linear change

in log-prevalence odds per time unit (i.e., session); and β3 is the difference in linear trends

between baseline and treatment phases, also in log-prevalence odds per unit time. When

the outcome is a measure of incidence and gr is a log link, the coefficients have units of

log-incidence, difference in log-incidence, or change in log-incidence per time unit.

There are two possible approaches to defining an effect size under model (6.2). One

approach would be to use the initial treatment effect β1 and the effect on trend β3 as a

two-dimensional description of the effect size. The other approach would be to choose a

clinically meaningful, fixed duration of treatment for purposes of summary; for example,

one could take as the target parameter the effect of treatment four sessions after intro-

duction, β1 + 4β3. When the outcome is a measure of prevalence and gr is a logit link,

the latter effect size is a log-prevalence odds ratio; when the outcome is a measure of

incidence and gr is a log link, it is a log-incidence ratio.

The latter approach is similar to the approach to defining design-comparable effect

sizes described in Section 2.4.1. For purposes of summarizing a single study, either ap-

proach may be reasonable. For purposes of research synthesis, the use of a bi-variate
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summary effect size has the advantage of retaining greater detail, but requires the use of

multi-variate meta-analytic models. On the other hand, using a single endpoint requires

the analyst to choose and justify a particular follow-up time, but also makes possible sim-

pler, more conventional approaches to meta-analysis. In what follows, I take the latter

approach because it leads to a somewhat simpler presentation. The remainder of this

section describes how to obtain an estimate of the target effect size parameter and a

corresponding variance estimate.

6.1.1. Effect size estimation with quasi-likelihood

For ease of notation, I describe methods of estimating a model given by

gr
(
πrj
)

= x′jβ

Var
(
Y r
j

)
=
(
t′jγ
)
Vr
(
πrj
)(6.3)

for j = 1, ..., n, where xj is a p-dimensional covariate vector that includes the treatment

indicator Tj, β is a p-dimensional mean parameter, tj = (1 − Tj, Tj)
′, and γ is a 2-

dimensional vector of dispersion parameters. Working with this general formulation also

has the advantage that the estimation methods I describe can be applied to other models

in addition to (6.2). Model (6.2) is of course a special case with xj = (x0j, x1j, x2j, x3j)
′,

where x0j = 1, x1j = j, x2j = Tj, and x3j =
∑j

k=1 Tk. Throughout, I assume that

gr(x) = logit(x) for r = C,M and gE(x) = log(x). Let hr = g−1
r , so that hr

(
x′jβ

)
= πrj ;

also denote ηj = x′jβ.



221

The effect size parameter of interest is a linear combination of the mean parameter

components, c′β for fixed, p-dimensional c. In the quasi-likelihood framework, an estima-

tor of β is defined as the solution to the p-dimensional quasi-score equation for the mean

parameters

(6.4) U1(β,γ) =
n∑
j=1

xj

(
dh
(
x′jβ

)
dηj

)
Y r
j − hr

(
x′jβ

)(
t′jγ
)
Vr
(
hr
(
x′jβ

)) = 0

and a 2-dimensional quasi-score equation for the dispersion parameters

(6.5) U2(γ,β) =
n∑
j=1

tj

[[
Y r
j − hr

(
x′jβ

)]2
/Vr

(
hr
(
x′jβ

))
− t′jγ(

t′jγ
)2

]
= 0

for a variance function Vr that is yet to be specified. Equivalently, an estimator of β can

be defined as the maximizer of a quasi-likelihood criterion function and an estimator of γ

can be defined as the maximizer of an extended quasi-likelihood criterion, as described in

McCullagh and Nelder (1989, Chps. 9-10). Equations (6.4) and (6.5) can be solved for β

and γ using an interlinked, iteratively re-weighted least squares (IRLS) fitting algorithm

(McCullagh & Nelder, 1989). An R implementation of this algorithm can be found in

the package dglm (Dunn & Smyth, 2012). Let β̂, γ̂ denote solutions to the quasi-score

equations; the effect size estimator is then c′β̂. Also let η̂j = x′jβ̂ and π̂rj = h (η̂j).

When modeling multiple baseline designs, piece-wise linear regressions for each phase,

as in (6.2), will be a common specification for the mean. In this case, β can be re-

parameterized into β0 and β1, each of which is estimated based only on the data from a

single phase; the quasi-score equation for the mean parameters (6.4) will then be indepen-

dent of γ. Given an estimate β̂, estimates of γ for the piece-wise model can be computed
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as

(6.6) γ0 =
1∑n

j=1(1− Tj)

n∑
j=1

(1− Tj)
(
Y r
j − π̂rj

)2

Vr
(
π̂rj
) , γ1 =

1∑n
j=1 Tj

n∑
j=1

Tj

(
Y r
j − π̂rj

)2

Vr
(
π̂rj
) .

The divisors in (6.6) are the sample sizes in each phase; alternately, one could divide

by the sample size minus p/2 as an approximate degrees-of-freedom correction. With

this correction, the estimators β̂ and γ̂ are exactly equivalent to the results of fitting

separate models to each phase. It is this approach that I follow in the simulations and

examples described later. For fitting the models, I use a modified IRLS algorithm with

a step-halving provision that ensures a monotonically increasing quasi-likelihood. The

modification provides improved the convergence properties (I. Marschner, 2011) and is

implemented in the glm2 package (I. C. Marschner, 2012) in R.

The quasi-score function U1(β,γ) is an unbiased estimating equation for β, given an

arbitrary value for γ. As a consequence, the estimator β̂ is an asymptotically consistent

estimator of β provided only that some rather general regularity conditions are satisfied

(Liang & Zeger, 1986). Crucially, this is true regardless of whether the variance function

Vr is correctly specified. The most salient of the regularity conditions is that the matrices

1

n

n∑
j=1

xjx
′
j

Var
(
Y r
j

)(
t′jγ
)2
V 2
r

(
πrj
) (dh (ηj)

dηj

)2

and
1

n

n∑
j=1

xjx
′
j

1(
t′jγ
)
Vr
(
πrj
) (dh (ηj)

dηj

)2

must have positive-definite limits as n → ∞. This condition will not be satisfied if,

for instance, the series length increases but the number of observations in the baseline

phase
∑n

j=1(1−Tj) remains fixed. The practical implication is that collecting a long data
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series is not enough; instead, the sample size within each treatment condition must be

sufficiently large to ensure that the estimator β̂ will perform well.

6.1.2. Selecting a variance function

I have yet to describe the exact form for the variance function Vr in (6.4) and (6.5). This

may seem to be a difficult problem because the variance of the recorded data will depend

on parameters of the event duration and interim time distributions over an above just

their expectations. In fact, even assuming specific parametric forms for FD and FE, it

is difficult to obtain analytic expressions for the variance of event counting, continuous

recording, or momentary time sampling data except in a few special cases.

The most tractable case is for an alternating Poisson process, a special case of an ARP

in which event durations and interim times are assumed to be exponentially distributed,

with D1 ∼ Exp(1/µ) and E1 ∼ Exp(1/λ). This process has the property that non-

overlapping time increments are both stationary and independent, which considerably

simplifies the derivation of moments. Denoting the length of the observation session as L,

prevalence as φ = µ/(µ+λ), and incidence as ζ = 1/(µ+λ), Table 6.1 reports the variance

of a reported datum generated by each of the three direct measurement procedures (see

Appendix B.4 for derivations of these expressions). Even in this basic case, the mean-

variance relationships are unwieldy expressions that involve nuisance parameters: for the

procedures that measure prevalence, the variances depend on incidence, and for event

counting, which measures incidence, the variance depends on prevalence.

Several possible modeling strategies could be followed here. One would be to assume

that the behavior stream follows an alternating Poisson process and that the nuisance
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Table 6.1. Moments of reported datum under an alternating poisson process

Recording procedure E(Y ) Var(Y )

Event counting ζL ζL
[
φ2 + (1− φ)2

]
+ 2φ2(1− φ)2

[
1− exp

(
−ζL

φ(1− φ)

)]

Continuous recording φ
2φ2(1− φ)2

ζL

1−
φ(1− φ)

[
1− exp

(
−ζL
φ(1−φ)

)]
ζL


Momentary time sampling φ

φ(1− φ)

K

[
1 +

2

K

K−1∑
k=1

(K − k) exp

(
−ζkL

φ(1− φ)K

)]

parameters are constant within each phase; on the basis of these assumptions, one could

develop estimators for the nuisance parameters implicated in each variance expression.

An alternative strategy would be to forgo estimation and just assume fixed values for the

nuisance parameters, based on prior knowledge of the behavior under study. Rather than

follow either of these strategies, I propose to approximate the mean-variance relationships

of an alternating Poisson process using functions that do not depend on the nuisance

parameters. Even when using these approximate variance functions, the estimator β̂

remains asymptotically consistent, though the form of approximation may affect its finite-

sample bias and precision.

For event counting data, the variance is approximately proportional to the mean except

when the mean is very small; this suggests taking VE(x) = x, which is the mean-variance

relationship of a Poisson distribution.

For continuous recording data, the second term in the variance is close to one except

when ζL is small, that is, when there are few events per observation session. This suggests

using VC(x) = x2(1 − x)2, which is sometimes known as the “Wedderburn” variance
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function (McCullagh & Nelder, 1989, p. 330). This variance function does not correspond

to any exponential family distribution, and is not always available in software for fitting

generalized linear models. Thus I also consider using VC2(x) = x(1 − x), though this

approximation has no particular justification other than that it is a convenient default

option in widely-available software.

Finally, the variance of momentary time sampling data could be approximated by its

first term, using VM(x) = x(1− x). This is the mean-variance relationship of a binomial

distribution. The accuracy of this approximation depends on both the expected number

of events per session ζL and the number of intervals sampled K. The approximation can

be justified in a rather different sense than the others, by considering a model not for

the reported data, but for the within-session recorded data as defined in Section 5.1.1. If

these within-session data are modeled using covariates that are constant within session,

then the posited model for the reported data (6.3) with a binomial variance function is

equivalent to a generalized estimating equation with independence working assumptions

(Liang & Zeger, 1986).

6.1.3. Variance estimation

I consider two approaches to estimating the variance of the effect size c′β̂. In the modeling

strategy that I have outlined, the variance model given in (6.3) could be only approxi-

mately correct or even entirely incorrect. In this situation, a commonly used approach

is to turn to variance estimators that are asymptotically consistent in the presence of

heteroskedasticity; such estimators are sometimes called “sandwich” or “robust” variance

estimators. H. White (1980) and MacKinnon and White (1985) proposed several different
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heteroskedasticity-consistent variance estimators for linear regression models; Liang and

Zeger (1986) proposed their use in the context of generalized linear models for longitudi-

nal data. Several different, asymptotically equivalent versions of these estimators exist;

the one described below uses an approximate first-order bias correction based on the hat

matrix (Kauermann & Carroll, 2001, p. 1931). I define the first, robust variance estimator

as

(6.7) VR = c′B−1MB−1c,

where

B =
n∑
j=1

xjx
′
j

1(
t′jγ̂
)
Vr
(
π̂rj
) (dh (η̂j)

dηj

)2

,

kj =
1(

t′jγ̂
)
Vr
(
π̂rj
) (dh (η̂j)

dηj

)2

x′jB
−1xj,

and

M =
n∑
j=1

xjx
′
j

(
Y r
j − π̂rj√

1− kj
(
t′jγ̂
)
Vr
(
π̂rj
))2(

dh (η̂j)

dηj

)2

.

I use the sandwich package (Zeileis, 2004, 2006) in R to compute VR.

The robust variance estimator VR is asymptotically consistent provided only that the

model for the mean outcome is correct. An alternative approach is to estimate the variance

of c′β̂ using

(6.8) VM = c′B−1c.
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The asymptotic consistency of this model-based variance estimator is predicated on having

a correct model for the variance of the outcome, about which I have expressed skepticism.

Still it seems reasonable to examine its performance, given that it is generated by default

in most software for fitting generalized linear models. Furthermore, it is known that

robust variance estimators can be inferior to model-based variance estimators, particularly

when based on only a small sample of data and when the model is close to correct (i.e.,

when the degree of heteroskedasticity is mild). Kauermann and Carroll (2001) provided

several examples where, under a correct variance model, the asymptotic efficiency of the

robust variance estimator is very low relative to the model-based variance estimator. Of

course, neither the model-based nor the robust variance estimator carries anything but

an asymptotic guarantee. I turn therefore turn to simulation evidence to examine their

performance with sample sizes typical of those found in single-case designs.

6.1.4. Small-sample performance

I used simulation to evaluate the magnitude of the bias of proposed estimators when based

on continuous recording, momentary time sampling, or event counting data; to compare

the performance of model-based variance estimators versus robust variance estimators;

and to compare the performance of the binomial variance function versus the Wedderburn

variance function for modeling continuous recording data. In order to moderate the

dimension of the simulations, I examined models involving only a linear trend, as would

be used to describe one phase of a design, rather than simulating a full single-case design

with multiple phases. For recording procedure r ∈ {E,C,M} and a series of length n,

the data-generating model for the mean of Y r
j is gr(π

r
j ) = β0 + β1tj, j = 1, ..., n, where
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tj = (2j − n − 1)/(n − 1). For brevity, the presentation in this section is focused on

a single target parameter, the predicted value of the transformed mean (i.e., the log-

prevalence odds or the log-incidence) at a fixed point in time J , extrapolating beyond the

final point in the phase by one quarter of the length of the series; denote this parameter

as ηJ = gr(π
r
J) = β0 + 1.5× β1.

The simulations varied β0, β1, and the data-generating model for the variance of Y r
j ,

and included models for the variance in which the assumed analytic model and the actual

data-generating model were inconsistent. I varied the phase length from n = 4 to n = 12,

typical of phase lengths found in empirical designs (Shadish & Sullivan, 2011). A complete

description of the data-generating model and simulation design can be found in Appendix

sections C.2 and C.3, along with a more detailed presentation of simulation results.

Across the levels of the simulation parameters, the proposed quasi-likelihood estima-

tors generally have small biases, particularly for sample sizes of n ≥ 8. As would be

expected, the biases of the estimators are larger when the underlying ARP is more vari-

able. Figure 6.1 displays the biases of the estimate η̂J for each type of data, using the levels

of the simulation parameters that produce the most extreme biases. For event counting

data, where ηJ = ln (ζJ), the maximal bias of η̂J is negligible even for the smallest sample

size considered; if the average incidence is at least 10 events per session, then the bias is

less than 0.03. For continuous recording data and momentary time sampling data, where

ηJ = logit (φJ), the bias is increasing in the average prevalence and in the magnitude of

the trend. When the estimator is based on continuous recording data, ηJ tends to be be

over-estimated, particularly when there is a steep trend in the series, but the magnitude

of the maximum bias is small for n ≥ 8. When based on momentary time sampling, η̂J
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(a) Event counting, φ∗ = 0.1, G = Exp-Exp.
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(b) Continuous recording with Wedderburn variance function, ζ∗ = 5, I = 0,
G = Exp-Exp.
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(c) Momentary time sampling, ζ∗ = 5, I = 0, G = Exp-Exp.

Figure 6.1. Maximal bias of quasi-likelihood estimator for ηJ based on (a)
event-counting data, (b) continuous recording data, and (c) momentary
time sampling data.
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Figure 6.2. Average relative bias and relative rmse of model-based and ro-
bust variance estimators, based on continuous recording data with Wedder-
burn variance function.

may have large bias for n = 4, but the maximum bias is much reduced for n ≥ 8. In

general, the proposed estimators have tolerable biases even for the fairly small sample

sizes typical of single-case studies, at least for the data-generating models considered in

these simulations.

Regarding the performance of the alternative variance estimators, a clear pattern

holds: though the robust variance estimator is usually less biased than the model-based

variance estimator, it also has much larger sampling variability. A typical result is de-

picted in Figure 6.2, which plots the average relative bias and relative root mean-squared

error of the model-based variance estimator VM(η̂J) and the robust variance estimator

VR(η̂J) based on continuous recording data and using the Wedderburn variance function.

The horizontal axis corresponds to sample size n. The rows of the lattice correspond

to more mis-specified (I = 0) versus approximately correctly specified (I = 1) analytic

models for the variance; the columns correspond to different event duration and interim
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Figure 6.3. Average bias and rmse of η̂J based on continuous recording
data, comparing the binomial and Wedderburn variance functions.

time distributions. In Figure 6.2a, it can be seen that both variance estimators are ap-

proximately unbiased when the analytic model for the variance is close to correct (bottom

row, I = 1), but the model-based estimator has positive bias when the analytic model

is mis-specified (top row, I = 0). However, from Figure 6.2b, VM has lower relative root

mean-squared error, on average, even at the largest sample size considered. The same

general pattern of results holds for event counting data and for momentary time sampling

data, though the robust estimator is severely biased for momentary time sampling data

when n = 4. In general, the greater precision of the model-based variance estimator leads

me to recommend its use, at least for sample sizes similar to those considered here and

when the variance model does not appear to be drastically mis-specified.

For modeling continuous recording data, I have proposed to use the Wedderburn vari-

ance function, though I also noted that the binomial variance function might be considered

because it is a convenient default. Figure 6.3 displays the average bias and rmse of the

estimator η̂J based on each function versus n. Use of the Wedderburn variance function
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Figure 6.4. Average relative bias of VM(η̂J) based on continuous recording
data with G = Exp-Exp, comparing the binomial and Wedderburn variance
functions.

leads to slightly larger bias, but the difference in bias is practically negligible; the rmse of

both estimators is nearly identical. The choice of variance function also has implications

for the performance of the model-based variance estimator. Figure 6.4 plots the rela-

tive bias of VM(η̂J) when based on each variance function. The generating distributions

are taken to be exponential in order to align with the approximation that motivates the

Wedderburn variance function. In the bottom row of the lattice (I = 1), the analytic

model for the variance is approximately correct and the Wedderburn variance function

leads to less bias than the binomial variance function; the bias produced by the latter

depends strongly on the average level of prevalence. In the top row of the lattice (I = 0),

the analytic model for the variance is more severely mis-specified, and neither variance

function is clearly superior. It would seem that use of the Wedderburn variance function

is to be preferred only when the variance model is approximately correct. The practical
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implication is that the analyst should assess the fit of the variance model (e.g., through

residual analysis) to try to diagnose possible mis-specifications.

6.2. Models with serial dependence

In this section, I describe one approach to extending the model given in (6.3) to

incorporate serial dependence between measurements from successive observation sessions.

I assume that the serial dependence arises from change in the latent parameters of the

behavior stream over time (beyond what can be captured in deterministic trends), rather

than from dependence in the measurement process itself. The introduction of variability

in the parameters of the behavior stream process leads to a technical distinction between

the conditional mean of the process and the marginal mean of the outcome, for which

some additional notation will be required. As previously, I assume that the datum from

session j is generated by applying a measurement procedure r to a realization of an ARP:

(6.9)
(
Y r
j |µj, λj

) iid∼Mr [ARP (µj, λj)]

(c.f. Equation 5.6). Now though, the parameters of the process µj, λj (or φj, ζj) will

themselves be treated as random. Let π∗rj = E
(
Y r
j |µj, λj

)
be the conditional expectation

of the reported datum from session j, based on procedure r. With event counting data

π∗Ej = ζjL; with continuous recording or momentary time sampling data, π∗rj = φj,

r ∈ {C,M}. I will continue to denote the unconditional expectation of the reported

datum as πrj = E
(
Y r
j

)
; thus, πrj = E

(
π∗rj
)

where the expectation is with respect to the

distribution of the ARP parameters. Note that πrj and π∗rj need not be equal.
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A between-session model for change in the behavior stream process–and thus an ef-

fect size–could conceivably be specified in terms of either the conditional or the marginal

mean of the process.1 The main advantage of conditionally-specified models is that their

parameters, including treatment effects, correspond very directly to changes in the be-

havior stream process. The main drawback of conditionally specified models is that their

parameters are sensitive to distributional assumptions regarding the latent process, which

can create difficulties for estimation and model-checking (Heagerty & Kurland, 2001; Hea-

gerty & Zeger, 2000). In the context of models for free-operant behavior, where one will

have only limited information regarding the conditional distribution of the measurements

(i.e., errors arising purely from measurement), it therefore seems more prudent to model

the marginal mean of the behavior stream process.

A marginal model for measurements Y r
1 , ..., Y

r
n based on procedure r ∈ {E,C,M} can

be written using an implicit specification, as demonstrated by Heagerty and Zeger (2000).

In its general form, the model has several parts. First, I posit a generalized linear model

for the marginal mean of the process, just as in the previous section:

(6.10) gr
(
πrj
)

= x′jβ,

1In a formal sense, the distinction between the two approaches corresponds to a distinction drawn between
population-averaged and subject-specified models for analysis of clinical trials (Neuhaus, Kalbfleisch, &
Hauck, 1991). However, in the present setting, the marginal mean is averaged over realizations of a posited
stochastic process, rather than over individuals. In my view, the advantages of conditionally-specified
models (c.f. Lindsey & Lambert, 1998) do not carry the same weight in this context.
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where gr has inverse hr. Next, I posit a model for the conditional mean of the process,

which could be non-linear in β:

(6.11) gr
(
π∗rj
)

= fr
(
πrj , σ

2
)

+ νj,

where νj ∼ N(0, σ2) and (ν1, ..., νn) follow an AR(1) process with serial correlation ρ.2

The function fr in (6.11) is defined implicitly by the relationship between the conditional

and marginal mean,

(6.12) hr
(
x′jβ

)
= πrj = E

(
π∗rj
)

= E
{
hr
[
fr
(
πrj , σ

2
)

+ νj
]}
.

In order to completely describe the data-generating process, one would need a model for

the dimension of the ARP not measured by the reported data (i.e., a model for φj if

r = E or a model for ζj if r ∈ {C,M}). The complete data-generating process would

then be described by (6.9). However, in the previous section, I avoided committing to a

model for this nuisance parameter by introducing an approximation for the variance of

the reported datum. Following the same approach, I propose to approximate the variance

of Y r
j conditional on the behavior stream as:

(6.13) Var
(
Y r
j |νj

)
=
(
t′jγ
)
Vr
(
π∗rj
)
,

where Vr is a variance function chosen according to the recording procedure, tj = (1 −

Tj, Tj)
′, and γ is a 2-dimensional vector of dispersion parameters. In the remainder of

2I focus on an AR(1) process because it is conventional for analysis of single-case designs. With sufficient
data, other dependence structures could certainly also be considered.
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this section, I give several specific examples of the general model and discuss effect size

definition.

6.2.1. Stable-phase models

As an initial example of the proposed model, consider the stable-phase model gr
(
πrj
)

=

β0 + β1Tj. Because the covariate takes on only two possible values, the form of fr is

irrelevant and the conditional mean follows a generalized linear model where gr
(
π∗rj
)

=

β∗0 + β∗1Tj + νj, with conditional regression coefficients satisfying

hr (β0 + β1T ) = E [hr (β∗0 + β∗1T + νj)]

for T = 0, 1.

6.2.2. Log-linear models for incidence

In the model from Section 6.1, I showed that use of the log link function gE(x) = ln(x) with

event-counting data leads to regression coefficients that represent proportionate changes

in incidence, which is useful for estimating the log-incidence ratio. The log link remains

useful in models with serial dependence, only now the coefficients represent proportionate

changes in average incidence, over realizations of the process. The log link also creates

a simple and convenient relationship between the conditional mean specification and the

marginal mean specification. With hE(x) = exp(x), (6.12) becomes

exp
(
x′jβ

)
= πEj = E (ζjL) = exp

[
fE
(
πrj , σ

2
)]

E [exp (νj)] ,



237

by which it follows that fE
(
πrj , σ

2
)

= x′jβ − σ2/2. Thus, if the marginal mean follows a

log-linear model, then so too does the conditional mean. What is more, all of the con-

ditional regression coefficients except for the intercept term are identical to the marginal

coefficients.

I have assumed a simple auto-correlation structure for the latent errors (ν1, ..., νn)

in (6.11), which induces dependence among the recorded data (Y1, ..., Yn). However, the

pattern of dependence in the latter is more complex. Taking VE(x) = x and treating the

variance model (6.13) as correct, it follows that

(6.14) Cov
(
Y E
j , Y

E
k

)
= πEj π

E
k

[
exp

(
ρ|j−k|σ2

)
− 1
]

+
(
t′jγ
)
πEj I(j = k)

where I() is the indicator function. The correlation in the reported data is then

corr
(
Y E
j , Y

E
k

)
=

exp
(
ρ|j−k|σ2

)
− 1√(

t′jγ

πEj
+ exp (σ2)− 1

)(
t′kγ

πEk
+ exp (σ2)− 1

) ,
which depends on πEj , πEk , and γ in addition to the variability of the latent errors σ2

and the latent autocorrelation ρ. Zeger (1988) gives a similar formula under a different

parameterization of the model, pointing out that the auto-correlation in the observed data

will always be less than that in the latent errors.

6.2.3. Logit-linear models for prevalence

In the models for continuous recording and momentary time sampling described in Section

6.1 (which did not allow for serial dependence), treatment effects are measured using

log-prevalence odds ratios, leading to use of the logit link function gC(x) = gM(x) =
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Figure 6.5. Conditional treatment effect β∗1 as a function of baseline ex-
pected prevalence β0 and variability σ2 in the logistic-linear stable-phase
model, fixing marginal treatment effect β1 = 1.

ln(x) − ln(1 − x). Applying the same link to the model with serial dependence leads to

treatment effects that are log-odds ratios of the expected prevalence over realizations of

the data-generating process. Unfortunately, the logit link does not lead to any analytically

convenient relationship between the conditional and marginal specifications.

As an illustration of the difference between the conditional and marginal parameters,

consider again the stable phase model described in Section 6.2.1, assuming that gr(x) =

logit(x). The magnitude of the conditional treatment effect depends on both the expected

prevalence during baseline (a function of β0) and on the degree of variability in prevalence

(as measured by σ2), in addition to the marginal treatment effect β1. Figure 6.5 plots the

conditional treatment effect β∗1 as a function of β0 and σ2, holding the marginal treatment

effect fixed at β1 = 1.
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A linear model for the log-odds of the marginal mean will generally lead to a model

that is non-linear in the log-prevalence odds of the conditional mean (except in the case

of the stable phase model, as previously noted). To illustrate, consider a model for a

single phase that includes a linear time trend in the marginal mean: logit(πrj ) = β0 +β1j.

Figure 6.6 displays the difference between the conditional log-odds fr(β0, β1, j, σ
2) and

the marginal log-odds β0 + β1j as a function of session j, for several values of β1 and σ2.

Though the conditional and marginal log-odds clearly differ, the trend in the conditional

log-odds remains close to linear except when both β1 and σ2 are large. Zeger, Liang,

and Albert (1988) suggested an approach that is useful for approximating fr(π
r
j , σ

2) in

the present context. They noted that approximating h(x) = 1/(1 + e−x) by a Gaussian

cumulative distribution function leads to a linear approximation for the conditional mean

specification:

(6.15) fr(π
r
j , σ

2) ≈ x′jβ
√

1 + c2σ2 = x′jβ
∗,

where c = 16
√

3/(15π).

Unlike in the log-linear model for event-counting, exact expressions for the marginal

covariance of the reported data are not available with the logit link. The marginal covari-

ance can be decomposed as

Cov(Y r
j , Y

r
k ) = Cov

[
E(Y r

j |νj),E(Y r
k |νk)

]
+ E

[
Var(Y r

j |νj)
]
I(j = k)

= Cov
[
hr
(
fr(π

r
j , σ

2) + νj
)
, hr
(
fr(π

r
k, σ

2) + νk
)]

+
(
t′jγ
)

E
[
Vr
(
π∗rj
)]
I(j = k).
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Figure 6.6. Degree of nonlinearity in the logistic-linear trend model, for
various values of σ2 and β1. Vertical axis corresponds to fr(β0, β1, j, σ

2) −
(β0 + β1j). The initial baseline prevalence is fixed at β0 = logit(0.5), which
leads to the highest possible degree of non-linearity.

Zeger et al. (1988) proposed to approximate the covariance of the conditional expectations

using a first-order Taylor series approximation to hr(x) about the mean of the random

effects νj, νk:

Cov
[
E(Y r

j |νj),E(Y r
k |νk)

]
≈ Cov

[
hr
(
x′jβ

∗)+ h(1)
r (x′jβ

∗)νj, , [hr (x′kβ
∗) + h(1)

r (x′kβ
∗)νk

]
= h(1)

r (x′jβ
∗)h(1)

r (x′kβ
∗)ρ|j−k|σ2,

where h(p) is the pth derivative of h(x), so h(1)(x) = h(x)[1 − h(x)]. Further replacing

the conditional mean with the marginal mean in the variance function, the marginal

covariance is approximately

(6.16) Cov(Y r
j , Y

r
k ) ≈ h(1)

r (x′jβ
∗)h(1)

r (x′kβ
∗)ρ|j−k|σ2 +

(
t′jγ
)
Vr
(
πrj
)
I(j = k).
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For modeling binary outcome data, Goldstein and Rasbash (1996) suggested using a

second-order Taylor series approximation to hr; this leads to another term in the covari-

ance:

(6.17) Cov(Y r
j , Y

r
k ) ≈ h(1)

r (x′jβ
∗)h(1)

r (x′kβ
∗)ρ|j−k|σ2

+
1

4
h(2)
r (x′jβ

∗)h(2)
r (x′kβ

∗)
(
1 + 2ρ2|j−k|)σ4

+
(
t′jγ
)
Vr
(
πrj
)
I(j = k),

where h(2)(x) = h(x)[1−h(x)][1− 2h(x)]. Though these approximations are ad-hoc, they

may nonetheless be reasonable for relatively simple between-phase models. Figure 6.7

plots the exact marginal auto-correlation of continuous recording data based on simulating

from a stable-phase model in which E
(
Y C

1

)
= · · · = E

(
Y C
n

)
= πC , for various values of πC

and latent auto-correlation ρ. The exact auto-correlations fit the first-order approximation

remarkably well.

6.2.4. Effect size definition

In models where the parameters of the behavior stream process are allowed to vary stochas-

tically over time, marginal treatment effect sizes no longer have exact, design-comparable

interpretations. The effect sizes defined in Section 5.2 must therefore be revisited. As

before, interest is in comparing a parameter of the behavior stream under two different

conditions, indicated by t = 0, 1. Under model (6.11), event counting data under condition

t measures ζt, which is itself a random quantity, measuring its expectation πEt = E(ζt).
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Figure 6.7. Marginal auto-correlation of continuous recording data in the
stable-phase model, for varying values of latent auto-correlation ρ and ex-
pected prevalence φ. Dots represent exact auto-correlation based on simu-
lated data with ζ = 20 and σ2 = 1. Lines are fitted curves corresponding
to (6.16).

The marginal log-incidence ratio is then defined as ωζ = ln
(
πE1 /π

E
0

)
. Continuous record-

ing and momentary time sampling data measure φt, which is itself a random quantity,

measuring its expectation πCt = πMt = E(φt). The marginal log-prevalence odds ratio is

then defined as

ψ = ln

[
πC1 (1− πC0 )

(1− πC1 )πC0

]
= ln

[
πM1 (1− πM0 )

(1− πM1 )πM0

]
,

Other marginal effect sizes such as log-prevalence ratios are defined similarly. Note that if

there is no variability in the parameters of the behavior stream process, these definitions

reduce to those given in Section 5.2. In Section 5.2.5, I noted various conditions under

which different effect size measures are comparable. These conditions no longer lead to

exact measurement-comparability if there is extra variability in the parameters of the
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behavior stream. Still, they might serve as approximate guides, especially when the

variability in the behavior stream parameters is not too large.

6.3. Estimation for models with serial dependence

This section examines two methods of estimating the marginally-specified model for se-

rially dependent measurements of free-operant behavior as given in (6.10)-(6.13). Having

argued that the marginal parameters in (6.10) are of primary interest as measures of effect

size, I focus on an estimating-equation approach that maintains a certain robustness to

misspecification of the other model components (i.e., those involving second moments).

Denote Yr = (Y r
1 , ..., Y

r
n )′, πr = (πr1, ..., π

r
n)′, Σr = Cov (Yr), X = (x1, ...,xn)′, and

Dr(η) = diag (dhr (η1) /dη, ..., dhr (ηn) /dη) for a given n × 1 vector η with components

η1, ..., ηn. Collect the parameters describing the covariance of Yr in θ = (γ ′, σ2, ρ)′; these

will be treated as nuisance parameters. An estimator of β can be defined as the solution

to the linear, unbiased estimating equation

(6.18) U3(β,θ) = X′Dr (Xβ) W(β,θ) [Yr − hr (Xβ)] = 0

for some n×n matrix W(β,θ) that may depend on the nuisance parameters; let β̂ be the

solution to (6.18). If β̂ is asymptotically consistent, then its variance is approximately

(6.19) Cov(β̂) ≈ (X′DrWDrX)
−1

(X′DrWΣrWDrX) (X′DrWDrX)
−1
.

The most asymptotically efficient choice for W is to use the inverse of the covariance of the

observations Σ−1, in which case the estimator’s variance reduces to
(
X′DrΣ

−1DrX
)−1
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(see McCullagh & Nelder, 1989, Section 9.5).3 Of course, even if an exact form for Σ

can be derived, it will involve the unknown parameters θ. The problems then are how to

choose W without sacrificing too much efficiency and how to estimate the variance of β̂.

6.3.1. Ignoring serial dependence

One possible approach to estimating β is simply to ignore the serial dependence structure.

Observe that if W is taken to be diagonal with non-zero entriesWjj =
[
(t′jγ)Vr(hr(x

′
jβ))

]−1
,

then (6.18) reduces to the quasi-likelihood estimating equation for independent data, as

given in (6.4); denote this estimator β̂I . Davis et al. (2000) studied this approach for a

log-linear model like the one I have described for event counting data. They showed that,

provided the covariate matrix X satisfies certain conditions, the quasi-likelihood estimator

based on assuming independence of repeated measurements is asymptotically consistent

and normally distributed even if the data actually exhibit dependence due to a latent,

stationary process. Whether a similar result holds for logit-linear models such as those

proposed for continuous recording and momentary time sampling data is an important

question for future research; I defer it for now because asymptotic results are not my

primary concern. Instead, I investigate the performance of β̂I using simulation, under a

simple model for continuous recording data.

3In the context of models for repeated measures on many individual cases, (6.18) is referred to as a
generalized estimating equation (GEE). Liang and Zeger (1986) proposed the use of GEE for longitudinal
data analysis and showed that, if Yr can be partitioned into independent sub-vectors, (6.18) leads to
consistent, asymptotically normal estimators for the marginal regression parameters even if W is not
chosen optimally, or is based on rough approximations to Σ. They showed further that the variance of

β̂ can be estimated consistently using sandwich-type estimators based on (6.19). Unfortunately, these
results are predicated on having multiple, independent cases, but in the present context I am concerned
with methods for modeling a single case.
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Consider a model for YC in which the marginal expected prevalence is constant, with

logit
(
πCj
)

= β for j = 1, ..., n. Assume that the conditional mean includes a latent error

π∗Cj = β∗ + νj, where ν1, ..., νn are normally distributed and follow an AR(1) dependence

model with variance σ2 and auto-correlation ρ. To complete the data-generating model,

assume that the reported datum from session j is based on a realization from a behavior

stream that follows an alternating Poisson process with prevalence φj = π∗Cj and constant

incidence ζ: (
Y C
j |φj, ζ

) iid∼MC [APP (φj, ζ)] .

Under this model, the estimator βI is equivalent to the logit of the sample mean, as used

in (5.10). The optimal (minimum-variance) estimator would use a weighted mean instead

of the simple arithmetic mean; denote this statistic β̂opt = logit
[
1′Σ−1Y/

(
1′Σ−11

)]
.

I use simulation to compare the efficiency of βI to the theoretical ideal βopt, for varying

levels of πC , ζ, σ, ρ, and n. The simulation methods and results are described fully in

Appendix Section C.4. I define relative efficiency as
√

E[(β̂opt − β)2]/E[(β̂I − β)2]. Figure

6.8 presents a typical result with πC = 0.5 and ζ = 20; the relative efficiency of the βI

versus βopt is plotted versus sample size n, for varying levels of latent variability σ2 and

auto-correlation ρ. The independence estimator βI is over 95% efficient except when the

latent errors are highly dependent. Even at the highest level of auto-correlation considered

(ρ = 0.8), the independence estimator is over 90% efficient, though the relative efficiency

decreases as sample size increases and as the latent variability σ2 increases. Based on

analogous simulations, similar patterns hold for momentary time sampling and event

counting data (See Appendix Sections C.4 and C.5, respectively). Thus, if one’s only goal
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is to obtain an estimate of the marginal regression coefficients, ignoring possible serial

dependence may be less foolhardy that it initially seems.

The primary drawback of ignoring serial dependence is that both the robust estimator

(6.7) and the model-based estimator (6.8) will be highly inaccurate, underestimating the

variance of βI to an extent that depends on the latent variability and autocorrelation.

Still, the point estimate need not be discarded; for purposes of meta-analysis, it could be

used validly in combination with empirical variance estimation. This may be particularly

useful if the meta-analyst must collect effect size estimates based on reported analyses,

rather than raw data.4 For primary analysis though, a principled approach to variance

estimation is required.

6.3.2. Estimating serial dependence

Another approach to estimation involves estimating the nuisance parameters θ that de-

scribe the serial dependence structure of Yr. An estimate of Σ(θ) can then be used either

to better estimate the variance of β̂I or to form the weighting matrix W in (6.18) and

re-estimate the effect size and its variance. Recall that (6.14) gives an exact form for Σ

under the log-linear model for event counting data described in Section 6.2.2. For the

logit-linear model for measures of prevalence, approximations for Σ are given in (6.16)

and (6.17).

4For purposes of effect size weighting, one could use a rough adjustment to the reported variance based
on a prior value of the autocorrelation. For example, the model-based variance estimator VM from a
stable-phase model underestimates the true variance proportionally to

F = 1− 2

n

n−1∑
j=1

(n− j)ρj .

A rough adjustment to the variance is therefore given by V ∗m = Vm/F .
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Figure 6.8. Relative efficiency of β̂I versus β̂opt based on continuous record-
ing data in the stable-phase model, for varying values of latent variability
σ2 and latent auto-correlation ρ. Expected prevalence is fixed at πC = 0.5,
incidence is fixed at ζ = 20.

Zeger (1988) proposed moment estimators of the nuisance parameters in log linear

models of count data; Davis et al. (2000) proposed bias-corrected moment estimators

motivated by the assumption that the conditional distribution of Yr is Poisson. In the

context of GEE models for multiple individual cases, a variety of other approaches to

nuisance parameter estimation are reviewed by Lipsitz and Fitzmaurice (2008). Recently,

Gaussian estimating equations have been proposed for estimation and inference on nui-

sance parameters in longitudinal models (Hall & Severini, 1998; Lipsitz, Molenberghs,

Fitzmaurice, & Ibrahim, 2000; Wang & Carey, 2004). Heuristically, this method is equiv-

alent to assuming that the outcomes Yr follow a multivariate normal distribution for

purposes of estimating the covariance matrix; the estimators are defined as the maxi-

mizers of the Gaussian (pseudo)-likelihood. Wang and Carey (2004) demonstrated that
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the Gaussian estimating equations are unbiased; the parameter estimators are therefore

asymptotically consistent when based on data from multiple, independent cases. Gauss-

ian estimating equations also have the advantage that the estimators remain well-defined

when outcome measurements are missing or irregularly spaced (Lipsitz et al., 2000).

For fixed β, the maximizers of the Gaussian pseudo-likelihood are equivalent to the

solution of the pseudo-score equations U4 (β,θ), where

(6.20) U4i(β,θ) = tr

(
∂Σ−1(β,θ)

∂θi

[
(Yr −Xβ) (Yr −Xβ)′ −Σ(β,θ)

])
= 0

for i = 1, ..., 4. It is clear that (6.20) is unbiased when Σ is correctly modeled. Let θ̂I

be the solution of (6.20) with β = β̂I . An estimator for the variance of β̂I can then be

calculated as

(6.21) C(β̂I) = (X′DrDrX)
−1

X′DrΣr

(
β̂I , θ̂I

)
DrX (X′DrDrX)

−1
.

Instead of using β̂I , one could instead define estimators for β and θ as the joint

solution of the estimating equations given in (6.18) and (6.20) with W = Σ−1; denote

these β̂P and θ̂P .5 The estimators can be obtained by iterating between solution of (6.18)

for fixed θ and (6.20) for fixed β. The covariance of β̂P can then be estimated using:

(6.22) C(β̂P ) =
(
X′D̂rΣ̂

−1
D̂rX

)−1

,

where Σ̂ = Σ
(
β̂P , θ̂P

)
and D̂ = D

(
Xβ̂P

)
.

5An interesting question for future research is whether θ̂ is asymptotically consistent for θ (as n → ∞)
under the AR1 serial dependence structure that I have described.
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Breslow and Clayton (1993) suggested using nuisance parameter estimators based the

restricted Gaussian likelihood rather than the full Gaussian likelihood. It seems reasonable

to consider this alternative in the present context, given the small sample sizes typical of

single-case research and in keeping with the use of restricted likelihood for estimation of

linear mixed models in Chapter 3. This restricted Gaussian likelihood leads to use of the

estimating equation U5(β,θ) = 0, where

(6.23) U5i(β,θ) = U4i(β,θ)− tr

[
∂Σ−1(β,θ)

∂θi
DX

(
X′DΣ−1DX

)−1
X′D

]
,

in place of (6.20). Define the estimators β̂R and θ̂R as the solution to the estimating

equations given in (6.18) and (6.23). The variance of β̂R can be estimated using (6.22)

with Σ̂ and D̂ evaluated at β̂R, θ̂R. Alternately, the variance of β̂I can be estimated by

evaluating (6.21) with β̂R, θ̂R.

6.3.3. Small-sample performance

I have described two methods for estimating effect sizes from of serially correlated mea-

surements of free-operant behavior. The first is to estimate the marginal mean regression

as if the data were independent, then estimate the dependence structure of the data for

purposes of variance estimation alone. The second involves iteratively solving two esti-

mating equations in order to refine the estimate of the marginal mean regression. Due

to the computational intensity required to solve the estimating equation for the nuisance

parameters, I do not evaluate the latter procedure directly. Instead, I focus on the per-

formance of estimators for the variance of the independence estimator β̂I , which can be
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calculated based on only a single evaluation of the estimating equation for the nuisance

parameters.

I conducted several simulation studies to evaluate various approaches to nuisance pa-

rameter estimation when the data are based on event counting, continuous recording, or

momentary time sampling procedures. I used a data generating model with a constant

marginal mean structure in order to focus on the effects of varying levels of latent variabil-

ity, serial dependence, and sample size. The simulation designs and results are described

fully in Appendix C. Here I highlight the main results.

For the log-linear model of event counting data, an exact covariance structure can be

derived based on the posited latent error structure. Two possible approaches to estimating

the parameters of the covariance structure are to use the Gaussian pseudo-likelihood

score equation in (6.20) or to use the restricted version in (6.23). Based on simulations

reported in Appendix C.5, the restricted pseudo-likelihood equation produces badly biased

variance estimates, and should not be used. The full pseudo-likelihood score equation

produces a better variance estimator (the FML estimator), though one that tends to be

biased downward except for relatively long series lengths. Figure 6.9 plots the average

relative bias of the FML variance estimator versus sample size, for varying levels of latent

variability σ2 and autocorrelation ρ. At the low level of autocorrelation, the FML variance

estimator has reasonably small bias for n ≥ 16; however, for ρ = 0.5, a series of length

n = 24 is required in order to a variance estimate that is close to unbiased. For very

high levels of autocorrelation, the true variance is underestimated even for n = 24. The

bias of the FML variance estimator is driven by biases in the estimates of σ2 and ρ, both

of which tend to be underestimated. Thus, fairly large sample sizes will be required for



251

ρ = 0.2 ρ = 0.5 ρ = 0.8

0.4

0.6

0.8

1.0

10 15 20 10 15 20 10 15 20
n

R
el

at
iv

e 
bi

as

σ2

0.125

0.25

0.5

1

Figure 6.9. Average relative bias of the FML variance estimator based on
serial dependence model for event-counting data.

accurate variance estimation, even in a model with the simplest possible marginal mean

structure.

For logit-linear models of continuous recording and momentary time sampling data,

estimation relies on an approximation for the covariance structure, rather than exact an-

alytic expressions. One would expect the accuracy of variance estimation to be affected

by the quality of the approximation, but the actual relationship appears to be more

complicated. Based on simulations reported in Appendix C.4, FML estimators based

on first-order approximation appears to be preferable for both continuous recording and

momentary time sampling data. Figure 6.10 plots the average relative bias of the FML

variance estimators based on 1st- and 2nd-order approximations to the covariance, for

varying levels of σ2 and ρ. On average, the first-order approximation has a downward

bias, whereas the second-order approximation has an upward bias for larger sample sizes.

The 1st-order approximation has lower root mean-squared error than the second-order

approximation, and so may be preferred on that basis. The RML estimating equations



252

ρ = 0.2 ρ = 0.5 ρ = 0.8

0.25

0.50

0.75

1.00

1.25

0.25

0.50

0.75

1.00

1.25

C
ontinuous recording

M
om

entary tim
e sam

pling

10 15 20 10 15 20 10 15 20
n

R
el

at
iv

e 
bi

as

Variance estimator

FML, 1st order

FML, 2nd order

σ2

0.125

0.25

0.5

1

Figure 6.10. Average relative bias of the 1st- and 2nd-order FML variance
estimators based on a serial dependence model for continuous recording or
momentary time sampling data.

based on first- and second-order approximations both produce badly biased variance es-

timators; the RML equations should therefore not be used in this context. Just as with

event counting data, fairly large sample sizes will be required to recover adequate variance

estimates, but even these will be approximate at best. For the logit-linear model, it may

be that a different approach to approximating the covariance matrix could lead to better

variance estimators; this should be investigated in future work.

6.4. Applications

This section presents two applications of the methods examined in this chapter to

actual single-case studies. Each study used a multiple baseline design with several cases,



253

but I perform a case-by-case analysis, in keeping with the conventional logic of single-case

designs.

6.4.1. Ross & Horner (2009)

Ross and Horner (2009) used a multiple baseline design across individuals to evaluate

the effect of a school-wide bullying prevention program on six students (two in each of

three schools) who had been previously identified as engaging in high rates of aggression

towards other students.6 For each case, investigators collected repeated measurements

before, during, and after implementation of the school-wide program, though for analytic

purposes I do not use the measurements during the four- or five-day acquisition phase. The

outcome measure is the number of incidents of physical and verbal aggression engaged

in by each case, measured via direct observation during lunch recess every weekday. I

obtained the raw data, including calendar dates of each measurement, directly from the

primary authors. Figure 6.11 plots the raw data from the study.

Compared to typical single-case designs, this study used a comparatively large num-

ber of measurements per phase. Baseline phases lasted between 17 and 56 calendar days,

during which between 12 and 31 measurements were collected on each case. Full imple-

mentation phases continued for between 17 and 52 calendar days, during which between

12 and 27 measurements were collected on each case. This is therefore an example where

the serial dependence models described in Section 6.3 might be expected to perform ad-

equately, though some of the phases are shorter than would be ideal. Before turning to

6In Section 2.2, I identified this study as an example of a design where the minimum natural level
of treatment assignment is the school, rather than the individual case. This feature of the study has
implications for identifying design-comparable effect sizes. However, case-level effect sizes can still be
described if this feature is ignored; I do in the present analysis for purposes of simplicity.
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Figure 6.11. Data from multiple baseline design reported by Ross and
Horner (2009). Solid vertical lines indicate the introduction of the inter-
vention; dotted vertical lines indicate the point at which the effect size is
assessed. Dashed lines depict a log-linear regression fit for each phase.

serial dependence, I report an analysis based on the assumption that repeated measure-

ments are independent.

I focus on a specific target effect size that measures the effect of the intervention two

weeks (14 calendar days) after the beginning of the acquisition phase. This target date

is indicated by a dotted vertical line in Figure 6.11. Two weeks after the beginning of

acquisition, the intervention has been fully implemented for at least one full school week.

I use the log-incidence ratio as the effect size metric, which can be interpreted as the log

of the ratio of the expected number of bullying incidents if the intervention is in effect to
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the expected number of bullying incidents if the intervention had not been introduced,

both for a given case and at the specified point in time.

Let Yij denote the jth outcome measurements from case i, let ζij = E (Yij), and

let dij denote the calendar date when Yij was measured, all for i = 1, ..., 6 and j =

1, ..., ni (excluding data from acquisition phases). Let d̃i be the calendar date of the first

observation during the acquisition phase for case i. I assume that the measurements follow

the model

(6.24) ln (ζij) = β0i + β1i

(
dij − d̃i

)
+ β2iI

(
dij ≥ d̃i

)
+ β3i

(
dij − d̃i

)
× I

(
dij ≥ d̃i

)
,

where I() is the usual indicator function. This model accounts for natural changes in the

incidence of bullying by case i through the inclusion of log-linear time trends during the

baseline phase; it further allows that the log-linear trend in incidence may be affected by

intervention. Collect the covariates for the jth measurement on case i in the vector xij,

and let βi = (β0i, β1i, β2i, β3i)
′. The target effect size for case i is then ωζi = β2i + 14β3i.

Note also that the log-incidence ratio can be used to calculate a proportionate reduction

in incidence as exp
(
ωζi

)
− 1.

I will examine two different models for the variance of Yij, each of which assumes that

the variance of the outcomes is proportional to the mean. The first model assumes that

the over- or under-dispersion of the outcomes is constant across phases:

(6.25) Var (Yij) = γiζij.

This model is analogous to using the pooled standard deviation for estimating a stan-

dardized mean difference between groups, and so I label it as “pooled dispersion.” The



256

second model allow for the possibility that the intervention may affect the dispersion of

the outcome (for instance, by changing the mean duration of each bullying incident):

(6.26) Var (Yij) =
[
γ0iI

(
dij < d̃i

)
+ γ1iI

(
dij ≥ d̃i

)]
ζij.

In the latter, “separate dispersion” model, γ0i measures dispersion during the baseline

phase and γ1i measures dispersion during the full implementation phase, both for case

i. The assumptions of these variance models affect how the model-based variance of

the target effect size is estimated, though not the point estimates. For completeness, I

also report robust variance estimates, as given in (6.7), even though simulation evidence

suggests that these may be less precise than the model-based estimates except under gross

violations of the variance model.

Table 6.2 reports effect size estimates and standard errors, calculated based on the

methods described in Section 6.1.1 and 6.1.3, respectively. The dotted lines in Figure

depict the fit of the log-linear regression. Point-estimates for the log-incidence ratio range

from -1.13 to -2.54. These effect size estimates correspond to proportionate reductions in

the incidence of bullying behavior of between 68% and 92%, two weeks after the start of the

intervention. All of the log-incidence ratios are estimated with high precision, regardless

of which variance estimator is used. In the model allowing for separate dispersions across

phases, there is some indication that dispersion is higher in the full implementation phase,

particularly for Scott, Ann, and Ken. As a result, the variance estimates for the “separate

dispersion” model are somewhat larger for the final three cases. The robust variance

estimates are quite close to the model-based estimates.7

7Given the similarity of the pooled dispersion estimates, an analyst might consider pooling them across
cases (i.e., assuming γ1 = · · · = γ6), or pooling across cases but allowing separate dispersions for each
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Table 6.2. Log-incidence ratio effect size estimates for cases in Ross &
Horner (2009), assuming independence of repeated measurements.

Pooled dispersion Separate dispersion

Case Effect size (ω̂ζ) VM γ̂ VM γ̂0 γ̂1 VR

Rob -2.54 0.26 0.60 0.30 0.71 0.55 0.36
Bruce -1.94 0.32 0.62 0.31 0.59 0.63 0.22
Cindy -1.13 0.12 0.59 0.11 0.48 0.71 0.06
Scott -2.03 0.19 0.68 0.21 0.41 1.02 0.21
Anne -2.26 0.16 0.66 0.26 0.41 1.38 0.33
Ken -2.47 0.18 0.52 0.36 0.28 1.22 0.34

Based on a random-effects meta-analysis of the effect size estimates and the separate

dispersion model variance estimates, the average log-incidence ratio two weeks after the

start of intervention is -2.02, with a 95% confidence interval of (-2.46,-1.46); this average

corresponds to a proportionate reduction of between 77% and 92%.8 The variability of

true effect sizes is estimated as τ̂ 2 = 0.16 (I2 = 40%); the Q test for heterogeneity is

not statistically significant (p = 0.16), though this test has very low power given only six

effect size estimates. Note that the random-effects meta-analysis assumes that effect size

estimates are independent, which may not be valid given that pairs of cases come from

the same school.

The analysis so far has proceeded under the assumption that repeated measures are

independent, but this assumption should be scrutinized. Turning now to models that

allow for serial dependence, I consider the same mean specification as given in (6.24), but

phase. Both of these approaches lead to variance estimates that are very similar to VM from the pooled
dispersion model.
8Using alternative estimates of the effect size variances for inverse-variance weighting leads to very similar
results. Fixed-effects meta-analysis also leads to very similar results.
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Table 6.3. Effect size estimates, variance estimates, and pseudo-maximum
likelihood estimates of nuisance parameters for cases from Ross & Horner
(2009), assuming serial dependence of repeated measurements.

Pooled dispersion Separate dispersion

Case ω̂ζ VM σ̂2 ρ̂ γ̂ ω̂ζ VM σ̂2 ρ̂ γ̂0 γ̂1

Rob -2.54 0.20 0.12 -0.72 0.28 -2.64 0.13 0.15 -0.60 0.00 0.29
Bruce -1.94 0.29 0.00 -0.34 0.56 -1.94 0.26 0.00 0.86 0.49 0.58
Cindy -1.13 0.11 0.00 -0.71 0.53 -1.11 0.09 0.08 -0.45 0.22 0.52
Scott -2.03 0.18 0.00 -1.00 0.62 -2.03 0.18 0.01 -0.81 0.37 0.90
Anne -2.26 0.14 0.00 1.00 0.60 -2.24 0.24 0.03 0.70 0.28 1.14
Ken -2.47 0.17 0.00 -1.00 0.47 -2.46 0.30 0.02 -0.33 0.21 1.00

now allow for a serially correlated latent error term such that

ln [E (Yij|νij)] = x′ijβi − σ2
i + νij,

where νij ∼ N(0, σ2
i ) and (νi1, ..., νini) follow an AR1 serial dependence model with auto-

correlation ρi. I consider the same two specifications for the variance model as used

previously (pooled dispersion or separate dispersion). I also fit the model assuming

that all cases share common nuisance parameters, so that θ1 = θ2 = · · · = θ6, where

θi = (σ2
i , ρ

2
i , γ0i, γ1i).

Table 6.3 reports estimates of effect sizes ω̂ζ , variances VM , and nuisance parameters,

all obtained through iterative fitting of the marginal mean estimating equation U3(β,θ)

and the Gaussian full pseudo-likelihood estimating equation U4(β,θ), as described in

Section 6.3.9 The effect size estimates from the pooled dispersion model are the same to

two decimals as the estimates assuming independence of repeated measurements. This

is because the latent variability parameters are estimated to be near zero for all but one

9The parameter estimates obtained from the initial fit of U4(βI ,θ) are very similar. In most cases,
convergence occurred after two to four iterations.



259

case, and so the estimated weighting matrix is very close to the identity matrix. The

effect size estimates from the separate dispersion model are also very similar to the earlier

estimates, and for the same reason. Variance estimates are uniformly smaller than the es-

timates based on assuming independence, likely driven by the use of full pseudo-likelihood

for estimation of the dispersion parameters. Consequently, the effect size estimates and

variances reported in Table 6.2 should be preferred, and I do not report a meta-analysis

of the estimates from the serial dependence model.

For cases with σ̂2 ≈ 0, the estimated autocorrelations are not meaningful because

the latent errors are negligible. For the first case (Rob), the latent variability estimate is

small but the autocorrelation estimate is strongly negative, which leads to estimates of the

effect size variance that are smaller than when independence is assumed.10 The estimated

autocorrelation for this case should be interpreted cautiously in light of the simulation

evidence, which indicated that the autocorrelation estimates have a negative bias when

based on short series. When the nuisance parameters are taken to be common across

cases and dispersion is allowed to vary across phases, the nuisance parameter estimates

are σ̂2 = 0.01, ρ̂ = −0.56, γ̂0 = 0.36, and γ̂1 = 0.72; substantively, the latent variability

estimate is negligible, and the autocorrelation estimate is not meaningful. Overall, the six

cases in this study do not display latent variability of the posited form, which necessarily

rules out the possibility of latent serial dependence.

10In many other contexts, negative autocorrelation may be implausible, though in this study it does seem
possible that the incidence of bullying may be lower following days where the incidence was higher, and
vice versa.
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6.4.2. Betz, Higbee, & Reagon (2008)

Betz, Higbee, and Reagon (2008) used an unbalanced AB design with replication to

evaluate the effect of using a joint activity schedule on the level of engagement of three

pairs of autistic children.11 In this example, each dyad (pair of children) represents a

single case. For each dyad, the investigators measured engagement repeatedly during a

baseline phase where no joint activity schedule was used, followed by a treatment phase

where a teacher prompted the students to use a joint activity schedule to guide interactive

play. Prompting was gradually faded over the course of the treatment phase. For analytic

purposes, prompting is taken to be a fixed aspect of the intervention, rather than a dyamic

consequence of both intervention and the dyad’s level of engagement. Further data from

maintenance and generalization phases are not used in the present analysis. Figure 6.12

plots the raw data from the study, which were obtained from a figure in the original study.

Outcome measurements were made using a momentary time sampling procedure,

recording the presence or absence of engagement every 20 seconds over the course of

each 20 minute observation session; the reported measurement on each occasion was then

calculated as the proportion of moments where engagement was observed (out of 60 pos-

sible). The design included 4, 8, or 10 sessions during baseline, followed by 17, 9, or

23 measurements during each dyad’s treatment phase. These phase lengths are shorter

than would be desirable for estimation of serial dependence models, but I proceed with

such analysis nonetheless. The original article gives no indication of the amount of time

between each session (i.e., hourly, daily, bi-weekly), which is unfortunate–without such

11The authors describe the design as a ”non-concurrent multiple baseline design,” but this terminology
is misleading because an essential feature of a multiple baseline design is concurrent measurement.
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Figure 6.12. Data from an unbalanced design with replication across cases
reported by Betz et al. (2008). Solid vertical lines indicate the introduction
of the intervention; dotted vertical lines indicate the point at which the
effect size is assessed.

information, it is difficult to interpret auto-correlation estimates and to assess the degree

of extrapolation on which the effect size estimates are predicated. I focus on a specific

target effect size that measures the effect of intervention after 10 sessions; this target time

point is indicated by a dotted vertical line in Figure 6.12. The choice of 10 sessions rep-

resents a balance between effects that are substantively interesting and what is plausible

given the available data. Even 10 sessions is ambitious in the latter regard because the

longest baseline phase contains only 10 measurements. The metric of the target effect size

is the log-prevalence odds ratio, which can be interpretted as the logged ratio of the odds

that the dyad is engaged during treatment to the odds that the dyad would be engaged

in the absence of treatment, both for a given case and at the specific point in time.
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Table 6.4. Log-prevalence odds ratio effect size estimates for cases in Betz,
Higbee, & Reagon (2008), assuming independence of repeated measure-
ments.

Case Effect size (ψ̂) VM γ̂ VR

Dyad 1 4.04 44.24 0.07 7.48
Dyad 2 2.52 2.35 0.07 3.17
Dyad 3 2.92 1.76 0.10 2.89

Let Yij denote the jth outcome measurements from case i and let φij = E (Yij), both

for i = 1, ..., 3 and j = 1, ..., ni. Let d̃i be the session number of the first observation

during treatment for case i. I assume that the measurements follow the model

(6.27) logit (φij) = β0i + β1i

(
j − d̃i

)
+ β2iI

(
j ≥ d̃i

)
+ β3i

(
j − d̃i

)
× I

(
j ≥ d̃i

)
,

where I() is the usual indicator function. For dyad i, this model accounts for natural

changes in the prevalence of engagement through the inclusion of logit-linear time trends

during the baseline phase, and further allows that the trend in prevalence may be affected

by intervention. As previously, let xij collect the covariates for the jth measurement

on case i and let βi = (β0i, β1i, β2i, β3i)
′. The target effect size for case i is then ψi =

β2i + 10β3i. Due to the relatively small number of baseline observations, I only consider

one model for the variance of the outcomes, the pooled dispersion model, given by

(6.28) Var (Yij) = γiφij(1− φij.

For completeness, I also report robust variance estimates, as given in (6.7).
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Table 6.4 reports effect size estimates and standard errors, calculated based on the

methods described in Section 6.1.1 and 6.1.3, respectively. Point-estimates for the log-

prevalence odds ratio range from 2.52 to 4.04, which are all large effects, corresponding

to many-fold increases in the odds of engagement. However, the effects are estimated

with low precision, particularly for Dyad 1, whose estimated effect size of 4.04 has an

approximate confidence interval (based on the model-based variance estimate) of ψ̂ ±

2
√
VM = (−9.27, 17.33). Such a lack of precision is intuitively consistent with the large

extrapolation involved with this dyad, where the baseline trend is extrapolated based on

only four data points. By contrast, the robust variance estimate seems inappropriately

small. Dyad 2 has an approximate confidence interval (again based on the model-based

variance estimates) of (-0.54, 5.58), while dyad 3 has an approximate confidence interval

of (0.26, 5.58). Only the case with the longest baseline phase has an effect size estimated

with sufficient precision to distinguish it from zero by this rough measure.12 Based on a

fixed-effects meta-analysis using inverses of the model-based variance estimates as weights,

the average log-prevalence odds ratio for the three cases is 2.78, with a 95% confidence

interval of (0.83, 4.72).

Figure 6.13 depicts the fit of the logit-linear model (6.27) for this study, which is helpful

for building intuition and model-checking purposes. The outcome data are plotted on the

log-prevalence odds scale, so that fitted trend lines are linear.13 Note in particular the

two observations in the baseline phase for the third dyad that are below -2.5. These

observations have high influence. In particular, removing observation Y3,10 leads to an

12A similar conclusion holds when confidence intervals are based on other variance estimates, such as
assuming constant dispersion across cases.
13Outcomes equal to zero or one are set to logit(1/120) ≈ −5 or logit(1− 1/120) ≈ 5, respectively.
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Figure 6.13. Logit-transformed outcomes versus session for Betz et al.
(2008), plus fit of model (6.27). Solid vertical lines indicate the introduc-
tion of the intervention; dotted vertical lines indicate the point at which the
effect size is assessed. Dashed lines depict the estimated logit-linear trends.

effect size estimate of just ψ̂3 = 1.41 with an approximate 95% confidence interval of

(-1.44, 4.27).

I now turn to a model that allows for serial dependence. I assume the same marginal

mean specification as given in (6.27), but now allow for a serially correlated latent error

term such that

logit [E (Yij|νij)] = f
(
x′ijβi

)
+ νij,

where νij ∼ N(0, σ2
i ) and (νi1, ..., νini) follow an AR1 serial dependence model with auto-

correlation ρi. I assume the same pooled same dispersion model as given in (6.28), and

also fit the model assuming that all cases share common nuisance parameters, so that
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Table 6.5. Effect size estimates, variance estimates, and pseudo-maximum
likelihood estimates of nuisance parameters for cases from Betz, Higbee, &
Reagon (2008), assuming serial dependence of repeated measurements.

1st-order approximation 2nd-order approximation

Case ψ̂ VM σ̂2 ρ̂ γ̂ ψ̂ VM σ̂2 ρ̂ γ̂

Dyad 1 3.73 25.92 0.18 0.10 0.03 3.69 27.16 0.14 0.14 0.03
Dyad 2 3.08 0.74 0.35 -0.54 0.00 2.99 0.78 0.27 -0.51 0.00
Dyad 3 3.01 1.67 0.11 0.25 0.07 2.99 1.66 0.09 0.26 0.07
Pooled 0.33 -0.12 0.02 0.27 -0.09 0.03

θ1 = θ2 = · · · = θ6, where θi = (σ2
i , ρ

2
i , γi). I report estimates based on both first- and

second-order approximations to the covariance of the outcomes.

Table 6.3 reports estimates of effect sizes ω̂ζ , variances VM , and nuisance parameters,

all obtained through iterative fitting of the marginal mean estimating equation U3(β,θ)

and the Gaussian full pseudo-likelihood estimating equation U4(β,θ), as described in

Section 6.3.14 Effect size estimates, variance estimates, and nuisance parameter estimates

from the first- and second-order covariance approximations are all very similar; I discuss

the estimates based on the first-order approximation because the simulation results sug-

gest that these may be more stable. The effect size estimates under the serial dependence

model are closer to one another and also larger, on average, than the estimates based on

assuming independence.15 The variance estimates are smaller than the estimates based on

assuming independence, though the reason for the reduction is not the same across dyads.

For dyad 1, the reduction in variance is due to the decrease in the estimated dispersion

parameter; the effect size for this dyad is still very imprecisely estimated. For dyad 2,

14Convergence occurred between 4 and 12 iterations.
15A fixed-effects meta-analysis of the estimates from the first-order approximation produces an estimate
for the average log-prevalence odds ratio of 3.01, with a 95% confidence interval of (1.59,4.42).
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the reduction in variance is due to a strongly negative estimate of the autocorrelation.

For dyad 3, the reduction in variance is slight. due to a modestly positive estimate of

autocorrelation.

The final row of Table 6.5 reports estimates based on a model which assumes that nui-

sance parameters are common across cases. Estimates from both approximations suggest

that the data exhibit non-trivial latent variability that is negatively autocorrelated. It is

difficult to judge whether negative autocorrelation is plausible due to the lack of informa-

tion about session timing in the report of the study. Whether the nuisance parameters

are pooled or taken as distinct across cases, the variances of the effect size estimates are

lower when accounting for possible serial dependence than when independence is assumed,

which is rather counter-intuitive. Following the heuristic that larger variance estimates

are more conservative, it seems more defensible for the analyst to use the variance esti-

mates based on assuming independence, rather than those based on allowing for serial

dependence.

6.5. Discussion

This chapter has examined ways to extend the between-session model for free-operant

behavioral measurements to include features that are key for single-case researchers. I

first considered models that assume independence of repeated measurements but incor-

porate simple time trends; such models, and effect sizes defined with respect to them,

can be estimated using the framework of quasi-likelihood for generalized linear models.

In these models, model-based variance estimators are more accurate than the asymptoti-

cally consistent robust variance estimators, so long as the variance model is not drastically
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misspecified. The variance model could also be extended to describe other patterns of

change over time, while still using the proposed estimating equation approach. This may

be useful as a method of describing behaviors where both prevalence and incidence change

concurrently, and should be explored in future work.

I then described models where repeated measurements are serially dependent as a

result of a latent error process in the parameters of the behavior stream. Serial depen-

dence has been recognized as a crucial feature of statistical models for single-case research

(Horner et al., 2012; Wolery et al., 2010), but previous research has been limited to models

for continuous, interval-scaled measurements. Incorporating serial dependency involves

further complications for data in the form of counts and proportions, including a dis-

tinction between the conditional and marginal means of the outcome process. I have

proposed an approach to modeling and effect size definition based on marginal means,

then investigated an estimation strategy involving linear estimating equations for effect

size parameters and Gaussian pseudo-likelihood for the parameters describing variance

and serial dependence.

I found using simulation studies that the proposed estimation approach may require

larger sample sizes for adequate performance (and particularly for estimation of effect

size variances) than are typically available from single-case time series. I can see three

possible avenues of work to address this shortcoming. First, one could consider alterna-

tive approaches to estimation of the nuisance parameters, such as by introducing penalty

terms. It would also be useful to pursue bias corrections or second-order estimating equa-

tions for the mean parameters in the models considered in this chapter, so as to maintain
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internal coherence with the bias-adjusted effect size estimators proposed in Chapter 5 for

the stable phase model.

Second, an alternative to focusing only on improving estimation techniques is to con-

sider introducing exchangeability assumptions at the level of the case. This chapter has

focused solely on models for individual cases, in keeping with the ideographic perspective

of single-case research, but a natural next step is to introduce assumptions describing vari-

ation across cases. As I argued in Chapter 2, such assumptions will in fact be necessary

for defining design-comparable effect sizes for studies of free-operant behavior, but they

may also bring benefits for estimation of individual effect sizes and nuisance parameters.

However, the plausibility of the exchangeability assumptions will need to be carefully

articulated and evaluated in the context of single-case studies.

A third avenue of work involves more and better data collection. Guidance about

what classes of models can feasibly be estimated for samples of a given size would clearly

be useful for the field. Besides just sample size and power analysis, though, improving

data quality would be an important step forward. Much wider classes of models can be

considered if the analyst has access to lower level data (what I have termed recorded data)

rather than only what is available in published graphs. I discuss this further in Section

7.3.

A crucial limitation of the models and estimation methods considered in this chapter

arises from the use of the quasi-likelihood framework. I have relied on it because it greatly

reduces the scope of the modeling problem: rather than requiring a description of the full

distribution of the data, quasi-likelihood relies on assumptions about the first two mo-

ments only, and has some useful robustness properties as a result. Moreover, these more
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limited assumptions are likely a better representation of the investigator’s state of knowl-

edge about the behavior stream process. Thus, quasi-likelihood is highly advantageous

when the goal is just to define and estimate a target effect size, but it has the disadvantage

of not fully describing the data-generating process. If one’s goal is not a reductive sum-

mary but a richer description of the behavior stream process, then the quasi-likelihood

framework is unsatisfactory. This point is illustrated by the examples presented in Section

6.4, where the reported nuisance parameter estimates are an incomplete description of the

data-generating model. Even given accurate nuisance parameter estimates, one would still

lack crucial details about the behavior stream process that could inform future simulation

work or be used for parametric bootstrapping approaches to variance estimation.

Finally, I note that the models presented in this chapter have focused solely on data

generated by event counting, continuous recording, or momentary time sampling proce-

dures. Interval recording is another widely used procedure for behavioral observation in

free-operant contexts but, as typically summarized, it does not produce a direct mea-

surement of prevalence or incidence. Models that are superficially similar to those for

momentary time sampling could conceivably be applied to interval recording data, but

the mean specification would be contingent on details of how the measurements were col-

lected. For example, a linear trend in the mean of 10-second partial interval recording

would not be linear if the data were collected using 20-second partial interval record-

ing. Such operational sensitivity makes it very difficult to specify a model that is both

conceptually coherent and tractable for estimation. Whether these difficulties can be

overcome–or whether a sizable portion of extant single-case research is not amenable to

statistical modeling due to flawed measurement operations–remains to be seen.
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CHAPTER 7

Future directions

This chapter presents several pieces of work in progress, illustrating some of the

projects that I hope to pursue in further work. Some of these future directions lead

beyond the domain of single-case research, while others target common research practices

in single-case research but are not immediately connected to meta-analysis. In Section

7.1, I describe a method for estimating standardized mean difference effect sizes in lon-

gitudinal designs, designed to be insensitive to the serial dependence structure of the

repeated measurements. This method is applicable not only to single-case designs, but

also to other types of interrupted time series designs, which are beginning to receive more

attention in education research (Bloom, 2003; Somers, Zhu, Jacob, & Bloom, 2012).

Chapter 5 described an approach to defining and estimating measurement-comparable

effect sizes for quantifying free-operant behavior. One implication of this exercise is that

some of the most commonly used procedures for measuring free-operant behavior are

deeply flawed, at least as currently analyzed. In Section 7.2, I present further illustra-

tions of the problems with interval recording procedures. These examples demonstrate

that–under not implausible circumstances–interval recording can lead to mistaken con-

clusions about the efficacy of an intervention, regardless of whether one uses a statistical

or visual approach to inference. On a related topic, Section 7.3 summarizes some in-

progress work aimed at developing new methods of analyzing interval recording data and
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new methods of measuring free-operant behavior, both seeking to remedy shortcomings

of current practices.

A primary goal of this thesis was to present new approaches to modeling and estimating

operationally comparable effect sizes. Having argued that operational comparability–

and measurement comparability in particular–is an important criterion in selecting an

effect size metric for meta-analysis, I proposed an approach to modeling measurement

comparability for outcomes based on free-operant behavior. This new proposal is one of

a growing array of effect sizes for single case research, but the operational comparability

of many of these other effect sizes has yet to be rigorously examined. Section 7.4 collects

notes on several prominent effect sizes, with the aim of understanding their operational

comparability. I offer some brief, general concluding thoughts in Section 7.5.

7.1. Robust moment estimation of standardized mean differences

In Chapter 3, I studied methods for estimating design-comparable effect sizes in the

family of standardized mean differences, which are defined under one of several different

hierarchical models that are linear in terms of the variance component structure. Following

the notation of Section 3.3, the target effect size parameters all have the form

(7.1) δ =
E(YiJ |xiJ = x1)− E(YiJ |xiJ = x0)√

Var(YiJ |xiJ = x0)
=

p′β√
r′θ

,

where xij is a covariate vector describing the jth measurement occasion for the ith case,

i = 1, ...,m and j = 1, ..., ni, β is a p × 1 set of fixed effect parameters, θ is a suitably

parameterized r × 1 set of variance component parameters, and and p and r are respec-

tively p × 1 and r × 1 vectors of constants. Here, the numerator of the effect size is the
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difference in mean outcomes at a fixed point in time J of two groups described by the

covariate values x1 and x0, and the square of the denominator of the effect size is the

total variance of the outcome (across the individual series) also at fixed time J .

I proposed to use restricted maximum likelihood (RML) estimation for the component

parameters of a hierarchical model for the data from a single-case design, then to form an

effect size estimator by substituting the RML estimates for the corresponding parameters

and applying an approximate small-sample bias correction. For models with a single case-

level variance component, I found that this estimator had bias and precision comparable to

that of an alternative estimator proposed by Hedges et al. (2012a, 2012b, HPS hereafter).

One potential criticism of the adjusted RML estimator for δ is that it is contingent

on having the correct model for y. If, for instance, the dependence structure of εi is

mis-specified, or if T is incorrectly assumed to have a factor structure, or if the errors εi

and ηi do not follow the posited Gaussian distributions, then the estimates of θ may be

inconsistent even as the number of cases grows large. This in turn will lead to inconsistent

estimation of δ. Furthermore, regardless of consistency, if the estimates are based on only

a small number of series m, then certain components of θ̂ may have moderate or even

severe biases.

All of these model specification threats affect estimation of the variance components.

In contrast, RML estimation of the fixed effects is unbiased even if the variance com-

ponents are poorly estimated, a property that carries through to the numerator of the

effect size estimator. Also, sandwich estimates are available for the covariance matrix of

the fixed effects that (under general conditions) remain asymptotically consistent despite
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mis-specification of the variance structure. It would be desirable to have a method for es-

timating r′θ that is similarly robust to model mis-specification. The effect size estimator

proposed by HPS has this robustness quality, in that it uses an exactly unbiased moment

estimator of the total variance that does not depend on having good estimates for the

other components of the variance structure. Unfortunately, that estimator can only be

applied in models with a single random effect for each case.

7.1.1. A robust moment estimator

Here I describe one way in which the estimation approach proposed by HPS could be

generalized to handle models with further random effects. Its properties are contingent

on the specification of two models. First, one must have the correctly specified marginal

mean structure E(y) = Xβ. Second, one must have a correctly specified model for the

marginal variance of the repeated measurements. Let

(7.2) Var(Yij|xij) = g′ijα,

where gij = g(xij) is a t×1 function of the covariate vector xij and α is a t×1 parameter

vector. Note that by assumption, r′θ = g′HJα for some covariate value gHJ = g(x0).

One can construct unbiased estimates of Var(Yij|xij) by taking the sample variance of

the outcomes across series with the same values of xij. For a given value of the covariate

xhj and a given j, let

S2
hj =

1

mhj − 1

m∑
i=1

I(xij = xhj) (Yij − ȳhj)2 ,
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where mhj =
∑m

i=1 I(xij = xhj) is the number of series with the target covariate value

and

ȳhj =
1

mhj

m∑
i=1

YijI(xij = xhj)

is the mean of the outcomes with the target covariate value.

Of course, because the estimator S2
hj applies to the particular covariate value at which

the variance in the effect size denominator is sought, one possible estimate of r′θ is simply

S2
HJ . However, this estimator might be very imprecise because it disregards much of the

data. For improved precision, one could use the model for the marginal variance given

in (7.2), estimated via weighted least squares. For a given j, suppose that there are

kj unique values of xij and a total of K =
∑n

j=1 kj unique covariate-by-measurement

occasion combinations. Let G be the K × t matrix that collects the ghj corresponding to

the unique covariate values, so that

G′ = (g(x11)′, ..., g(xknn)′) .

Let S = (S2
11, ..., S

2
knn

)′ be a K × 1 vector collecting the sample variances at each combi-

nation of covariate values, and write C = Cov(S). An unbiased estimator of r′θ is then

given by

(7.3) U = g′HJα̂ = g′HJ (G′WG)
−1

G′WS

for a given K ×K weighting matrix W. For arbitrary W, the variance of U is given by

(7.4) Var(U) = g′HJ (G′WG)
−1

G′WCWG (G′WG)
−1

gHJ ,
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The optimal (minimum variance) weighting matrix is given by the inverse of the covariance

matrix of S, in which case U has variance g′HJ (G′C−1G)
−1

gHJ . Even though C depends

on the entire covariance structure of y, one can still construct W based on RML estimators

of θ (or any other estimators) while preserving the unbiasedness of the target variance

estimator U .

The estimator U can be written as a quadratic form in y. Let F be an mn × K

matrix that maps the unique covariate-by-measurement occasion combinations to the

observations, with entries fm(i−1)+j,h = I(xij = xhj) for h = 1, ..., K, i = 1, ...,m, and

j = 1, ..., n. Now observe that the residuals of which the S2
hj are composed can be written

as

(7.5) r =
[
Imn − F (F′F)

−1
F′
]

y.

Note that F′F − IK is a K × K diagonal matrix with diagonal entries equal to m11 −

1, ...,mknn − 1. Define the mn×mn matrices

B = diag
[
g′HJ (G′WG)

−1
G′W (F′F− IK)

−1
F′
]

A =
[
Imn − F (F′F)

−1
F′
]

B
[
Imn − F (F′F)

−1
F′
]

=
[
Imn − F (F′F)

−1
F′
]

B.

(7.6)

It follows that U = r′Br = y′Ay. It can be verified that E(U) = tr(AΣ) = g′HJα.

Because U is a quadratic form, the usual Box-Satterthwaite approximation can be

used to derive an approximate degrees-of-freedom correction:

(7.7) ν =
U2

tr(AΣAΣ)
,
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and the target effect size estimated by

(7.8) gU = J(ν)
p′β̂√
U

for a given, unbiased estimate of β̂. Of course, this small-sample bias correction is based

on the full, Gaussian likelihood posited for y.

7.1.2. Future work

Much work remains to fully develop this approach. Three of the more immediate questions

to be answered are:

(1) What form for the marginal variance model given in (7.2) is implied by certain

simple random effects specifications? It would be useful to fully work out the

algebra for some leading examples, such as for a model with a single random

slope.

(2) For some leading examples, how large a loss of efficiency is entailed in using U

to estimate the effect size scale, relative to using RML estimators directly?

(3) How would missing observations on some measurement occasions affect the prop-

erties of U? It may be that by relying only on the marginal variance model, miss-

ing observations pose a greater threat than under the full hierarchical model. It

will be important to make a precise statement of the conditions under which

missing data is ignorable for estimating U , and consider mitigation strategies for

when those conditions are not met.
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Beyond these questions, it will also be useful to construct and study examples where the

hierarchical model is mis-specified, either in terms of the dependence structure or the

error distributions, in order to put the claimed robustness of this approach to the test.

7.2. Problems with partial interval recording

The results and estimation methods presented in Chapter 5 illustrate that partial

interval recording data is highly problematic because it is not a direct measurement of

any readily interpretable dimension of behavior. Rather, the measurand of a partial

interval recording procedure is a function of both prevalence and incidence, as well as the

distribution of interim times and the length of the active interval. Results of studies that

use partial interval recording are thus difficult to interpret due to their dependence on

scientifically irrelevant operational factors.

Still, partial interval recording remains in wide use.1 One possible justification for its

use is that construct validity is secondary to internal validity: so long as the procedure is

applied consistently across measurement occasions (i.e., holding the active interval length

and session length constant for the duration of the study), the internal validity of the study

is preserved. I have encountered this line of argument several times during discussions

with applied researchers, and so it is worth illustrating carefully why it is incorrect.

In this section, I develop two hypothetical examples demonstrating how using partial

interval recording can produce misleading conclusions about whether an intervention has

the intended effect. These examples serve as cautionary tales, warning applied researchers

of the perils of definitional operationalism and the importance of construct validity.

1Some textbooks even recommend it. Kazdin (2011) advises: ”Whenever there is doubt as to what
assessment strategy should be adopted, an interval approach is almost always applicable” (p. 79).
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Texts on behavioral observation sometimes distinguish between between discrete be-

haviors, in which each instance of the behavior has negligible duration (e.g., hi-fiving)

versus state behaviors, in which instances can last for longer periods of time (e.g., hug-

ging). In the former case, interest is in the incidence of the behavior; in the latter,

prevalence may be of primary interest. Partial interval recording is used in both contexts,

interpreted as a measure either of incidence or of prevalence. I give one example of each

context.

7.2.1. Partial interval recording for measuring incidence of a discrete behavior

First, consider a study evaluating the effect of an intervention for reducing the self-

injurious behavior of a child with autism. Prior to intervention, the child displays self-

injurious behaviors that have very short duration, so that incidence is the primary dimen-

sion of interest. Suppose that, prior to intervention, the behaviors follow the alternating

renewal process described in Section 5.1.2, with all event durations equal to 0 (so µB = 0)

and interim time distribution FB
E (t) given by the following mixture of two gamma distri-

butions:

FB
E (t) =

3

5
FΓ(t|24, 1) +

2

5
FΓ(t|8, 6),

where FΓ(x|k, θ) denotes the cumulative distribution function of a gamma random variable

with shape k and scale θ. Figure 7.1a plots the density of this interim time distribution.

Given this distribution, the average interim time between self-injurious behaviors is λB =

3
5
× 24 + 2

5
× 48 = 33.6 seconds. Further suppose that the intervention causes a change in

the distribution of interim times, so that after introducing the treatment, the behaviors

follow an alternating renewal process with µT = 0 and interim time distribution F T
E (t)
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given by

F T
E (t) =

3

5
FΓ(t|2, 2) +

2

5
FΓ(t|2, 24).

See Figure 7.1a for a plot of the interim time density after intervention. The average

interim time between self-injurious behaviors is now λT = 3
5
× 4 + 2

5
× 48 = 21.6 seconds.

The behaviors are substantially more frequent (going from 2 per minute to 3 per minute),

meaning that the intervention does not produce the desired reduction in behavior, and is

instead actually harmful.

Suppose that the investigator uses an ABAB design with 8 sessions per phase; during

each session, he measures self-injurious behavior using partial interval recording with an

active interval length of l = 15 seconds, 5 seconds of rest time for recording, and a total

session length of 20 minutes. Figure 7.1b plots an example of how the results of this

study might appear; it was created by simulating behavior stream data according to the

distributions FB
E and F T

E , then calculating the partial interval recording data according

to Equations (5.3) and (??). The average proportion of partial intervals in this simulated

example is 0.45 during the A (baseline) phases, compared to 0.37 during the B (interven-

tion) phases; the proportion actually decreases slightly, even though the true incidence

has increased! Of course, this is only one realization. To verify that the decrease is not

just a fluke of the particular sample, the expected value of the partial interval data from

each phase can be calculated across many repetitions of the study. From the formula given

in Table 5.3, the expected proportion of intervals is 0.45 during the A phases compared

to 0.38 during the B phases, so the decrease will be observed generally. In fact, if the

investigator used more sessions per phase or longer observation times during each session,

the decrease in partial intervals would have been even more apparent.
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(b) Simulated single-case graph using partial interval recording
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(c) Simulated single-case graph using event counting

Figure 7.1. Example of partial interval recording with a discrete behavior
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Now imagine that a second researcher also participated in this study, observing each

session and using an event counting procedure to record measurements. Figure 7.1c plots

the data that she would record, based on the same realization of the underlying behavior

stream as used in Figure 7.1b. The increase in frequency is readily apparent; in this

simulated example, the average number of events goes from 36.2 during the A phases to

51.5 during the B phase. Over many repetitions of the study, the expected number of

events per session is 35.7 during the A phases and 55.6 during the B phases.

7.2.2. Partial interval recording for measuring prevalence of a state behavior

Similarly deceptive results are also possible when using partial interval recording to mea-

sure the prevalence of state behaviors.2 Consider a study evaluating the effect of a particu-

lar teaching technique thought to prevent disruptive behavior. A particular child displays

disruptive behavior that can last for non-trivial lengths of time, and so the main dimen-

sion of interest is prevalence. The investigator uses an ABAB design with eight 20-minute

sessions per phase; she measures disruptive behavior using partial interval recording with

an active interval length of l = 15 seconds and 5 seconds of rest time for recording.

Prior to intervention, the child displays disruptive behaviors that last an average of

µB = 6 seconds and that follow a gamma distribution with FB
D (t) = FΓ(t|2, 3); the

interim time between instances of disruptive behavior also follows a gamma distribution

with FB
E (t) = FΓ(t|3, 4), so that the average interim time is λB = 12 seconds. It follows

that, on average, the child’s prevalence of disruptive behavior is µB/(µB + λB) = 0.33.

Suppose that the teaching technique causes an increase in both the average duration

2Kraemer (1979) discussed an example similar to the one I present, though her analysis was based on a
fixed behavior stream rather than a stochastic process.
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(a) Simulated single-case graph using partial interval recording
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(b) Simulated single-case graph using continuous recording

Figure 7.2. Example of partial interval recording with a state behavior

of disruptive events and the average interim time. Specifically, when the intervention is

applied, µT = 20, F T
D(t) = FΓ(t|2, 10), λT = 30, and F T

E (t) = FΓ(t|3, 10). On average then,

the intervention increases the prevalence of disruptive behavior to µT/(µT + λT ) = 0.40.

Figure 7.2a plots an example of how the results of this study might appear. A clear

decrease is evident: in this realization of the simulation, the proportion of partial intervals

averages 0.91 during the A (baseline) phases versus 0.71 during the B (intervention)

phases. More generally, the expected proportion of partial intervals can be calculated

as 0.91 during the A phases versus 0.68 during the B phases. Using partial interval
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recording may lead the investigator to conclude that the teaching technique reduces the

prevalence of the child’s disruptive behavior, when in fact the opposite is true. Had the

investigator instead used a continuous recording procedure, the results would appear as

in Figure 7.2b; in this realization of the simulation, the proportion of session time with

disruptive behavior averages 0.35 during A phases and 0.42 during B phases, very close to

the true prevalence levels. Using momentary time sampling would have produced similarly

unbiased results, though with somewhat lower precision.

7.3. Markov models for partial interval recording and momentary time

sampling

Given that the mean of partial interval recording data is very difficult to interpret in

terms of the underlying parameters of the behavior stream process, it would be useful

to consider other methods for analyzing such data, yet little previous research has done

so. To my knowledge, the only existing proposals for more elaborate analysis are due

to Ary and Suen (1983) and Suen and Ary (1984, 1986), who proposed procedures for

estimating incidence and prevalence from recorded data generated using partial interval

recording. However, these procedures lack any articulated, model-based motivation and

their empirical performance has been called into question (Rogosa & Ghandour, 1991).

Other approaches have been studied for analyzing momentary time sampling data.

For example M. Brown, Solomon, and Stephens (1977) and Griffin and Adams (1983)

proposed using a latent alternating Poisson process model of the behavior stream to

estimate prevalence and incidence based on momentary time sampling data. In work

reported elsewhere (Pustejovsky, 2013), I have followed a similar approach for the analysis
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of partial interval recording data. Specifically, I have demonstrated that partial interval

recording data can be modeled using a discrete-time Markov chain derived from a latent

alternating Poisson process model of the behavior stream. Thus, if the analyst has access

to within-session recorded data collected using a partial interval procedure (rather than

only reported summary data), full likelihood-based methods can be used to estimate

behavioral prevalence and incidence.

I have also proposed a new procedure for recording behavioral observation that in-

volves combining momentary time sampling, partial interval recording, and whole interval

recording (Pustejovsky, 2013). This new procedure, called augmented interval recording,

also involves a latent alternating Poisson process model, but produces recorded data that

has a much simpler dependence structure. Over much of the parameter space, the new

procedure yields estimates of prevalence and incidence that are considerably more precise

than those based on partial interval recording.

The proposed methods for analyzing recorded partial interval data and augmented

interval data have two main limitations, having to do with practical feasibility and sen-

sitivity to modeling assumptions. Regarding feasibility, I suspect that the augmented

interval recording procedure will require only marginally more effort than interval record-

ing alone, but this has yet to be verified in the field. Furthermore, estimation of model

parameters based on data collected using either procedure will require computations that

are considerably more complex than simply taking the mean. Thus, it will be vital to

create easy-to-use programs that efficiently automate the required calculations, in order

to make the proposed estimation techniques accessible and attractive for researchers in
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the field. Regarding sensitivity, the estimation procedures are based on a latent alter-

nating Poisson process model. I use the assumptions of this parametric model due to

the mathematical tractability they provide, rather than out of any conviction that they

are empirically appropriate. In future research, I will need to study the sensitivity of the

proposed methods to violations of the underlying modeling assumptions. I suspect that

such violations may be rather difficult to assess, even from the comparatively rich data

generated by augmented interval recording.

Several related avenues of further research are required to fully develop these estima-

tion methods and novel recording procedures. First and most immediately, I will need

to build a prototype device (such as a smart phone app) so that the augmented inter-

val recording procedure can be tested under realistic conditions. Second, I will need to

make further comparisons between the procedures (e.g., momentary time sampling, par-

tial interval recording, and augmented interval recording) and provide practical guidance

regarding their use. Third, for the new estimation methods to be usefully applied in the

context of single-case designs, I will need to incorporate regression models and perhaps

even frailty (random-effects) models for describing session-to-session variation in preva-

lence and incidence. Finally, it will be useful to consider whether the models for partial

interval recording and augmented interval recording can be generalized to accommodate

alternating renewal processes other than the alternating Poisson process. In pursuing

each of these tasks, the central goal will be to provide better tools for recording and

analyzing data based on direct observation of behavior, which improve the precision and

interpretability of measurements while maintaining ease of application.
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7.4. Other effect size proposals

In Chapters 3 and 5, I have presented a variety of parametric models for single case

designs. I showed how these models can be used to express design-comparable and

measurement-comparable effect sizes in terms of model components. Such operationally

comparable effect sizes add to an expanding literature on methods for summarizing and

meta-analyzing single-case designs. The models that I have presented in previous chapters

are also useful for understanding the practical interpretation and statistical properties of

other effect size proposals in the single-case literature. This section briefly examines the

properties of several prominent effect size proposals under the assumptions of some of the

simple parametric models that I have described, focusing in particular on their sensitivity

to design- and measurement-related study operations.

7.4.1. Within-case standardized mean differences

For a simple two-phase design, Busk and Serlin (1992) proposed using the standardized

mean difference between phases as a measure of effect size for a single case. The two main

critiques of this effect size are that it deals only with changes in the average level of the

outcome (rather than accounting for trends as well) and that its sampling distribution is

affected by auto-correlation (Beretvas & Chung, 2008b).

Consider applying the standardized mean difference to the data from a single case in

a multiple baseline design, with treatment assigned after time Ti. The standardized mean

difference between phases is calculated as

(7.9) dBS =
ȳTi − ȳBi

si
,
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where (suppressing the dependence of Yij on Ti)

ȳBi =
1

Ti

Ti∑
j=1

Yij, ȳTi =
1

n− Ti

n∑
j=Ti+1

Yij

and

s2
i =

1

n− 2

[
Ti∑
j=1

(
Yij − ȳBi

)2
+

n∑
j=Ti+1

(
Yij − ȳTi

)2

]
.

Suppose that Model MB1 applies, so that there are no time trends, and further suppose

that repeated measurements on a given case are independent, so that φ = 0. It then

follows that, for a given case i, dBS estimates β1i/σ; if the case is sampled from a larger

population of cases, then dBS can be considered an estimate of γ10/σ. This is the average

treatment effect, scaled by the variance of the within-case errors. Van den Noortgate and

Onghena (2008) note that this parameter is related to the design-comparable effect size

dAB by a factor of
√

1− ρ, where ρ = τ 2
0 / (τ 2

0 + σ2) can be interpreted as a reliability

coefficient for the outcome measure.

It is also interesting to note that if Model MB1 applies, including non-zero first-order

auto-correlation, dBS will be biased as an estimate of γ10/σ. This is because s2
i will be a

biased estimate of σ2: from a result given in Hedges et al. (2012a, Appendix B),

(7.10) E(s2
i ) = σ2

[
1− 2

n− 2

(
1

Ti

Ti−1∑
j=1

φj(Ti − j) +
1

n− Ti

n−Ti−1∑
j=1

φj(n− Ti − j)

)]
.

It can be seen from (7.10) that the bias of s2
i depends not only on the degree of auto-

correlation, but also on the phase lengths. All else equal, longer phase lengths will lead to

less-biased estimates of σ2 and thus less-biased estimates of γ10/σ. Furthermore, for fixed
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phase lengths, the conventional small-sample correction for standardized mean differences

(Hedges, 1981) will not apply in an exact sense because s2
i will not be χ2

n−2-distributed.

Other researchers have proposed estimation methods that account for serial correla-

tion, which will mitigate (at least to some extent) the problem of using s2
i to estimate σ2.

For example, Swaminathan et al. (2010) scale their treatment effect estimate by the stan-

dard deviation of the within-case errors, adjusted based on an estimate of the first-order

auto-correlation. As noted in Section 2.4.2, these authors define their treatment effect as

the difference between the observed outcomes at the mid-point of the treatment phase and

the predicted outcome at the same point, based on a linear trend projection from the base-

line phase. Under Model MB5, which allows for baseline trends and treatment-by-time

trend interactions, their proposed effect size for a given case i has estimand

(
β1i + β3i

N + Ti
2

)
/σ.

Note that the magnitude of this effect size depends on design features–if the study had

been longer, or if the case had been assigned to treatment at a different point, then

the target parameter would have been different. As noted in Section 2.4.2, such design-

dependence is undesirable because it introduces irrelevant variation and thus reduces the

interpretability of the parameter. To illustrate this reduced interpretability, consider how

the case-level estimand implied by the Swaminathan et al. (2010) procedure would change

if cases were sampled from a larger population of cases. One would have to postulate some

mechanism by which new cases would be assigned a treatment assignment time. Then

assuming that such assignment would be completely at random, the effect size can be
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considered an estimate of (
γ10 + γ30

N + T̄

2

)
/σ,

where T̄ is the mean of the distribution of potential treatment assignment times.

7.4.2. Reliability-corrected standardized mean differences

In the context of cross-sectional experimental designs, Hunter and Schmidt (2004) have

proposed using an effect size that divides the usual standardized mean difference by the

reliability of the outcome measure ρ. As noted in Section 1.1.2, this reliability-adjustment

can be motivated by a particular model for the comparability of different outcome mea-

surement operations. For use with cross-sectional experiments, their procedure typically

requires information from an external validation study. However, because single-case de-

signs involve repeated measurements, an internal estimate of the reliability of the outcome

is available. The test-retest reliability of the outcome is the correlation between measure-

ments on the same individual at a given time j and at time j + k (in the absence of

treatment), ρ = corr (Yij, Yi,j+k), where k is the number of measurement occasions be-

tween tests. Under Model MB1 or MB2, the total variance of the outcome is stable, and

so ρ = (τ 2
0 + φkσ2)/(τ 2

0 + σ2). For sufficiently spaced tests, ρ ≈ τ 2
0 /(τ

2
0 + σ2), as noted

by Van den Noortgate and Onghena (2008), and the reliability-adjusted effect size would

have estimand γ10/τ0. So long as there is any within-case variation, this effect sizes will

be greater than the design-comparable δAB.3

3Of course, the presence of time trends complicates the notion of reliability (Molenaar, 2004; Raudenbush
& Liu, 2001). For instance, under Model MB4, the correlation between Yij and Yi,j+k depends on which
measurement occasions are chosen.
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7.4.3. Non-overlap statistics

Non-overlap statistics are the most commonly used measures of effect size for meta-

analysis of single-case research (Maggin, O’Keeffe, & Johnson, 2011). Though it is some-

times claimed that the interpretation of these statistics does not depend on a particular

parametric model (c.f. Parker, Vannest, & Davis, 2011), the implied estimands of many

of these statistics do in fact vary depending on the data-generating model. This can be

seen by examining the behavior of several non-overlap statistics under simple models for

multiple baseline data.

First consider the percentage of non-overlapping data (PND), a popular effect size

metric proposed by Scruggs et al. (1987), and intended for use when the data do not

display time trends. For a given case, and assuming that the treatment is intended to

increase the level of the outcome, the PND is defined as the percentage of data points in

the treatment phase that exceed the maximum point of the baseline phase:

(7.11) PNDi = 100%× 1

n− Ti

n∑
j=Ti+1

I [Yij > max{Yi1, ..., YiTi}] .

Working under assumptions similar to MB1 and assuming no autocorrelation (φ = 0),

Allison and Gorman (1994) used simulation to demonstrate that the expectation of PND

depends strongly on the length of the baseline phase, making it highly design-dependent.4

Their simulation results can be verified analytically by noting that, since φ = 0, repeated

measurements are independent and identically distributed.5 Writing Φ(·) for the cumula-

tive distribution of a standard normal random variate and φ(·) for the standard normal

4They also provide an analytical approximation for the expectation assuming that the treatment effect
was null (γ10 = 0), reporting that E(PNDi) ≈ 1− 2−1/Ti .
5To be precise, this is true conditional on the model parameters for case i.
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density, it follows that

1

100%
E [PNDi] = E [Pr (Y1n > max{Yi1, ..., YiTi}|Yi1, ..., YiTi)](7.12)

= E

[
1− Φ

(
max{Yi1, ..., YiTi} − β0i − β1i

σ

)]
= E

[
1− Φ

(
Z(Ti) −

γ10

σ

)]
,

where Z(Ti) is the maximum of Ti independent standard normal random variates. 6 Using

the density of Z(Ti) (Severini, 2005, p. 218),

(7.13) E [PNDi] = 100%×
[
1− Ti

∫ ∞
−∞

Φ
(
z − γ10

σ

)
[Φ(z)]Ti−1 φ(z)dz

]
,

an expression that can be evaluated using numerical integration.7 Furthermore, if γ10/σ =

0, then (7.13) evaluates to E(PNDi) = 100%/(Ti + 1).8 Figure 7.3a plots the expectation

of the PND statistic as a function of the within-case standardized mean difference γ10/σ;

separate lines are used for treatment assignment times of Ti = 5, 9, 15. It can be seen that

6Also,

Var

(
PNDi

100%

)
=

1

n− Ti
E
[
Φ
(
Z(Ti) −

γ10
σ

)]
+
n− Ti − 1

n− Ti
E
[
Φ2
(
Z(Ti) −

γ10
σ

)]
− E2

[
Φ
(
Z(Ti) −

γ10
σ

)]
.

7This result assumes that the treatment effect is constant across cases. If it is instead assumed that each
case is sampled from a larger population of cases and that treatment effects vary as in Model MB2, the
expected value of PND in the population would be found by replacing γ10 by β1i in (7.13), then taking
the expectation over the distribution of β1i. Because E(PNDi|β1i) is non-linear with respect to β1i, the
population expectation would depend not only on γ10, but also on τ21 .
8Also, if γ10/σ = 0, then

Var(PNDi) = (100%)2 × Ti(n+ 1)

(n− Ti)(Ti + 1)2(Ti + 2)
.
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Figure 7.3. Expectations of non-overlap statistics as a function of β1i/σ, for
varying values of Ti. Solid lines use Ti = 5; dashed lines use Ti = 9; dotted
lines use Ti = 15.

the expected value of PNDi is strongly affected by the length of the baseline phase, even

for non-null treatment effects, and is also non-linearly related to γ10/σ.

Another non-overlap effect size, the percentage of data-points exceeding the median

(PEM), is closely related to PND and can be similarly analyzed. The PEM statistic,

proposed by Ma (2006), is defined as the percentage of data-points in the treatment

phase that exceed the median of the baseline phase:

(7.14) PEMi = 100%× 1

n− Ti

n∑
j=Ti+1

I [Yij > median{Yi1, ..., YiTi}] .

For simplicity, suppose that Ti is odd. Under Model MB1 and assuming φ = 0, it can be

shown that

(7.15) E [PEMi] = 100%×
[
1− Ti

(
Ti − 1
Ti−1

2

)
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×
∫ ∞
−∞

Φ
(
z − γ10

σ

)
[Φ(z)](Ti−1)/2 [1− Φ(z)](Ti−1)/2 φ(z)dz

]
.

(The derivation follows along similar lines to that for PNDi.) Furthermore, if γ10/σ = 0,

then E(PEMi) = 100%/2.9 Figure 7.3b plots the expectation of the PEM statistic as a

function of the within-case standardized mean difference γ10/σ, for varying baseline phase

lengths Ti. It can be seen that the expected value of PEMi is insensitive to baseline phase

length, and converges rapidly to Φ(γ10/σ) as Ti increases.

The expected values of the PND and PEM statistics were derived under the assumption

that repeated measurements on the same case are (conditionally) independent. Expec-

tations under more general dependence assumptions (such as first-order auto-regression)

are considerably more complex because they involve distributions of multivariate normal

order statistics, and remain a topic for further investigation. However, the distribution

of certain other non-overlap statistics can be obtained even without the independence

assumption.

Parker and Vannest (2009) proposed to use the non-overlap of all pairs of data-points

in the baseline and the treatment phases (NAP) as a measure of effect size for single-

case research.10 For a treatment expected to improve the level of a continuous outcome,

and not displaying trends in baseline or treatment phases, the statistic is defined as the

number of pairs in which the observation from the treatment phase is greater than the

observation from the baseline phase, as a proportion of all pairs of baseline and treatment

9Also, if γ10/σ = 0, then

Var(PEMi) = (100%)2 × n+ 1

4(n− Ti)(Ti + 2)
.

10The authors note that the NAP statistic is equivalent to the area under a receiver-operator characteristic
curve and that it is known in various other contexts as the common language effect size, the probability
of superiority, the dominance statistic, and the Mann-Whitney U statistic (Parker & Vannest, 2009).
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phase observations:

(7.16) NAPi =
1

Ti(n− Ti)

Ti∑
j=1

n∑
k=Ti+1

I [Yik > Yij] .

Parker and Vannest (2009) argued that NAP offers improved sensitivity and greater con-

current validity with other measures of effect size, compared to PND, PEM, and other

non-overlap statistics.

The expectation of the NAP statistic is determined partially by the level of auto-

correlation among repeated measurements. Under the assumptions of Model MB1, and

allowing −1 < φ < 1,

E(NAPi) =
1

Ti(n− Ti)

Ti∑
j=1

n∑
k=Ti+1

Pr (Yik − Yij > 0)(7.17)

=
1

Ti(n− Ti)

Ti∑
j=1

n∑
k=Ti+1

Φ

(
γ10

σ
√

2(1− φ|k−j|)

)
.

If γ10/σ = 0, then E(NAPi) = 1
2
. Also, if φ = 0 then E(NAPi) = Φ

(
γ10/(σ

√
2)
)
. For a

positive treatment effect, the expectation is inflated slightly by φ, though not substantially

so except when φ is close to 1. The increase is also mitigated by longer phase lengths.

7.4.4. Future work

I have analyzed several prominent effect size proposals, focusing mostly on simple models

for the multiple baseline design. All of the proposals I have examined are related in

some way to the distribution of the within-case errors: several proposals use the within-

case variance to scale the treatment effect estimate, while the non-overlap statistics are

functions of the full distribution of the within-case error distributions. Thus far, I have



295

focused entirely on the properties of these statistics when within-case measurement errors

are normally distributed, with scale independent of the mean. In future work, I will need

to revisit these effect size proposals when applied to different types of measurements, such

as continuous recording or event counting. I expect to find that many of the proposals will

be very sensitive to the measurement operations of the study, such as the length of the

observation session used to collect continuous recording data, the length of the intervals

used to collect partial interval recording data. More fundamentally, the interpretation of

some proposed effect sizes may even depend on which recording procedure is used.

7.5. Final thoughts

This thesis has proposed new approaches to analyzing single-case research, focusing

on models and methods under which operational comparable effect sizes can be defined. I

have examined two distinct aspects of operational comparability: design-comparability in

Chapters 2 through 4 and measurement-comparability in Chapters 5 and 6. As noted in

Section 5.6.2, the general framework for design-comparability could certainly be applied to

define effect sizes that are both design- and measurement-comparable. Before proceeding

along that path in future work, it is worth first reflecting on some broad lessons drawn

from the work presented in this thesis. I offer the following comments largely for purposes

of self-critique, though some of them may apply more broadly to other recent proposals

for quantitative analysis of single-case research. If other researchers find them useful, so

much the better.

The first lesson is that, in order to make true progress, future methodological develop-

ments will need to be closely tied to empirical applications. The measurement-comparable
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effect sizes for free-operant behavior proposed in Chapter 5 were motivated by an actual

research synthesis on a topic that continues to be of interest to the field (c.f. P. L. Morgan,

2006; von Mizener & Williams, 2008). The example gave a sense of the scope across which

the proposed effect sizes apply: not to all single-case studies, but to a subset broad enough

to encompass the studies included in a full synthesis. Future work that has similar scope,

such as effect sizes for measuring changes in restricted-operant behavior, will be useful to

the extent that it it aligns with sensible inclusion criteria for the field of application. The

same principle holds for the development of design- and measurement-comparable effect

sizes, which will only be useful to the extent that a body of empirical research exists where

they might reasonably be applied.

A related lesson is that the assessment of new quantitative methods for single-case

research should also be closely tied to empirical applications. In the simulation studies

presented in this thesis, I have sought to use design parameters that coincide with em-

pirical practice (e.g., the number of cases per study, the length of phases). After all, the

primary limitation of any simulation study is lack of generality: if the scope of a simu-

lation is unrealistic, its conclusions will not be relevant to actual applications. However,

tying simulations to empirical data proved to be difficult for the models of free-operant

behavioral processes described in Chapters 5 and 6, precisely because the proposed mod-

els are novel and thus the empirical knowledge base for understanding their parameters

does not yet exist. The implication would seem to be that the development of real-life

empirical applications should not be limited to methods for which exhaustive simulation

evidence already exists, because the latter must be informed by the former. Furthermore,
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the development of new analytic methods can have implications for the design stages of

research practice, by motivating investigators to collect more or different data.

A final lesson is that, if quantitative analysis of single-case research is to become an

established practice, there will need to be greater focus on model fitting and assumption

verification. In many of the examples that I have presented, target effect size estimates

were sensitive to functional form specification. This feature is a feature common to most

if not all interrupted time series designs, and needs to be emphasized more directly. Apart

from causal identification assumptions, regular assumptions regarding statistical fit also

need to be scrutinized. Though I have sought to follow good analytic practice in the

examples I have presented, I have not reported these in any detail. Future work may

need to lay out analytic steps and model checks more explicitly in order to establish best

practices. Connections between model checking and established conventions of visual

analysis should also be explored.
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APPENDIX A

A twice-adjusted estimator for the standardized mean difference

Chapter 3 described models and estimation methods for a standardized mean differ-

ence effect size having the general form

δAB =
p′γ√
r′θ

,

where γ is a vector of fixed effect parameters and θ a vector of variance component

parameters, both defined for a hierarchical linear model described in Section 3.3, and

p and r are constant vectors of appropriate length. The restricted maximum likelihood

(RML) estimator of δAB is calculated by substituting RML estimates for the corresponding

component parameters of the effect size. I described an adjusted estimator of the effect size

based on approximating the sampling distribution of the RML estimator by a non-central

t distribution. The development proceeded under the assumption that RML estimator

of the squared denominator of the effect size was unbiased, so that only a degrees-of-

freedom adjustment was needed for the RML estimator. In this Appendix, I present a

further adjustment to the RML estimator, based on using an approximation to the bias

of the squared denominator r′θ. The approximation to the bias of θ̂ was given by Cox

and Snell (1968) and applied in a similar context by Kenward and Roger (2009).

The development proceeds as follows: I first derive an expression for the first-order

bias of the restricted maximum likelihood estimators of the variance components θ in a
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mixed-effects linear model, as defined in Chapter 3. I then demonstrate that the bias

is unchanged for linear re-parameterization of the variance components and show that

the bias correction term ξ does not depend on the statistic it corrects. Based on these

properties, the final section presents the twice-adjusted effect size estimator.

A.1. Bias of RML estimators of variance components

Define the joint null cumulants of the restricted maximum likelihood given in (3.31)

as

κs,tu = E

[
∂lR
∂θs

∂2lR
∂θt∂θu

]
, κstu = E

[
∂3lR

∂θs∂θt∂θu

]
.

Cox and Snell (1968, equation 20) show that

(A.1) E(θ̂w − θw) =
1

2

r∑
s=1

r∑
t=1

r∑
u=1

[
IθE
]−1

st

[
IθE
]−1

wu
(κs,tu + κt,su + κstu) +O(m−1),

for w = 1, ..., r. The third derivatives of lR, along with their expected values, are needed

for computing the approximate biases of the parameters. These are as follows:

∂3lR
∂θs∂θt∂θu

=
1

2
y′Q

[...
Vstu + [6]V̇ν1QV̇ν2QV̇ν3 − [3]V̈ν1ν2QV̇ν3 − [3]V̈ν1QV̇ν2ν3

]
Qy

− 1

2
tr
(
Q

...
Vstu + QV̇sQV̇tQV̇u + QV̇tQV̇sQV̇u − [3]QV̇ν1QV̈ν2ν3

)
E

(
∂3lR

∂θs∂θt∂θu

)
= κstu = 2tr

(
QV̇sQV̇tQV̇u

)
− 1

2
tr
(

[3]QV̇ν1QV̈ν2ν3

)
,

where [6]V̇ν1QV̇ν2QV̇ν3 indicates the sum over the 6 permutations of ν1, ν2, ν3 = s, t, u.

The mixed third-degree null cumulants are

κs,tu = κs,ut =
1

2
tr(QV̇sQV̈tu)− tr(QV̇sQV̇tQV̇u).
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This allows the following simplification:

κs,tu + κt,su + κstu = −1

2
tr(QV̇uQV̈st).

Let
[
Cθ
u

]
s,t

= tr(QV̇uQV̈st) for s, t = 1, ..., r, cθu = tr
([
IθE
]−1

Cθ
u

)
and cθ =

(
cθ1 , ..., c

θ
r

)′
,

where IθE is the expected information matrix parameterized by θ. With this notation

established, (A.1) can be expressed as

E(θ̂w − θw) = −1

4

r∑
s=1

r∑
t=1

r∑
u=1

[
IθE
]−1

st

[
IθE
]−1

wu
tr(QV̇uQV̈st) +O(m−1)

= −1

4

r∑
u=1

[
IθE
]−1

wu
tr
([
IθE
]−1

Cθ
u

)
+O(m−1).

The bias of the full vector of variance components is therefore

(A.2) E(θ̂ − θ) = −
[
IθE
]−1

cθ/4 +O
(
m−1

)
.

Finally, define bθ = −
[
IθE
]−1

cθ/4 to be the approximate bias of the RML variance

component estimates. In the next section, I show that this expression is invariant to

linear re-parameterization of the variance components.

A.2. Properties of the approximate bias correction

For use in a correction to the RML effect size estimator, it will be important that the

approximate bias correction term is invariant to linear re-parameterization and does not

depend on the parameter that it is intended to correct. Recall the re-parameterization

described in Section 3.3.5, in which ψ = g(θ), with first entry ψ1 = r′θ and remaining

entries ψ∗ that create a one-to-one mapping from θ; let h = g−1. Define cψ and Cψ
u ,
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u = 1, ..., r, just as the analogous terms involving θ. The invariance property can then be

expressed as:

(A.3) bψ1 = r′bθ.

Though this property of joint-null cumulants might be considered general knowledge, I

have not been able to locate a proof. Therefore, I offer the following demonstration of

(A.3). To begin, note that because ψ1 =
∑r

i=1 riθi and θ = h(ψ), it follows that

r∑
i=1

ri
∂hi
∂ψs

= I(s = 1)

for s = 1, ..., r and that

(A.4)
r∑
i=1

ri
∂2hi
∂ψs∂ψt

= 0

for s, t = 1, ..., r. Let Hj = ∂2hj/∂ψ
′∂ψ. Now observe that the (s, t)th entry of Cψ

u is

tr

(
Q
∂V

∂ψu
Q

∂2V

∂ψs∂ψt

)
=
∑
i,j,k

tr(QV̇iQV̈jk)
∂hi
∂ψu

∂hj
∂ψs

∂hk
∂ψt

+
∑
i,j

tr(QV̇iQV̇j)
∂hi
∂ψu

∂2hj
∂ψs∂ψt

,

and so

Cψ
u =

∑
i,j,k

[
Cθ
i

]
j,k

∂hi
∂ψu

∂hj
∂ψ′

∂hk
∂ψ

+
∑
i,j

[
IθE
]
i,j

∂hi
∂ψu

Hj

cψu = tr

([
IψE
]−1

Cψ
u

)
=
∑
i

cψi
∂hi
∂ψu

+
∑
i,j

[
IθE
]
i,j

∂hi
∂ψu

tr

([
IψE
]−1

Hj

)

cψ = (∇h)′cθ +
∑
j

(∇h)′
[
IθE
]
·,j tr

([
IψE
]−1

Hj

)
.
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The relationship between
[
Iψ
]−1

and
[
Iθ
]−1

given in (3.43) then leads to

[
IψE
]−1

cψ = (∇g)
[
IθE
]−1

cθ +
∑
j

(∇g)·,jtr

([
IψE
]−1

Hj

)
.

Since (∇g)1,j = rj, it follows that

[(
IψE
)−1

cψ
]

1

= r′
[
IθE
]−1

cθ + tr

([
IψE
]−1∑

j

rjHj

)
,

the second term of which is zero by (A.4). Division by -4 then gives (A.3). Finally,

note that this invariance property holds if one takes cu = tr (I−1Cu), regardless of which

information matrix is used. However, it is required that the expected information matrix

be used to compute the bias correction b = − [IE]−1 c/4.

Next, I show that r′bθ is proportional to r′θ̂, so that the bias correction does not

depend on the parameter it is intended to correct. Because of the linear invariance

property (A.3), it is sufficient to show that bψ1 ∝ ψ1. Observe that

[
Cψ

1

]
1,1

= 0
[
Cψ
u

]
1,1

= 0[
Cψ

1

]
t,1

= tr
(
RẆt

)
/ψ̂2

1

[
Cψ
u

]
t,1

= tr
(
RẆuRẆt

)
/ψ̂1[

Cψ
1

]
s,t

= tr
(
RẄst

)
/ψ̂1

[
Cψ
u

]
s,t

= tr
(
RẆuRẄst

)
for s, t, u = 2, ..., r. To evaluate cψu , the full inverse of the expected information matrix is

needed; this can be written as:

(A.5)
[
IψE
]−1

=

 2ψ̂2
1

N−p−k′EL
−1
E kE

−2ψ̂k′EL
−1
E

N−p−k′EL
−1
E kE

−2ψ̂L−1
E kE

N−p−k′EL
−1
E kE

2
(
LE −

kEk
′
E

N−p

)−1

 ,
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where kE =
[
tr
(
RẆ2

)
, ..., tr

(
RẆr

)]′
and LE is a matrix with (s − 1, t − 1)th entry

tr
(
RẆsRẆt

)
for s, t = 2, ..., r.

Now observe that k′EL−1
E

[
Cψ
u

]′
1,t=2,...,r

= tr
(
RẆu

)
. Therefore

cψ1 = tr

([
IψE
]−1

Cψ
1

)
=

2

ψ̂1

[
tr

((
LE −

kEk′E
N − p

)
ME

)
− 2k′EL−1

E kE

N − p− k′EL−1
E kE

]

cψu = tr

([
IψE
]−1

Cψ
u

)
= 2

tr

((
LE −

kEk′E
N − p

)
Ou

)
−

2tr
(
RẆu

)
N − p− k′EL−1

E kE


where ME has (s−1, t−1) entry tr

(
RẄst

)
and Ou has (s−1, t−1) entry tr

(
RẆuRẄst

)
for s, t, u = 2, ..., r. It can be seen that cψ1 is proportional to 1/ψ̂1 and cψu is constant with

respect to ψ̂1. Writing cψ∗ = (cψ2 , ..., c
ψ
r ) and using (A.5) once more,

−4bψ1 =
(
IψE
)−1

1,·
cψ =

2ψ̂2
1

N − p− k′EL−1
E kE

cψ1 −
2ψ̂k′EL−1

E cψ∗
N − p− k′EL−1

E kE
∝ ψ̂1.

Thus, the RML estimator ψ̂1 has bias that is approximately multiplicative.

A.3. A twice-adjusted effect size estimator

Using the expression for the approximate bias of θ̂ from Cox and Snell (1968), I now

define a twice-adjusted estimator for the effect size parameter. Define the constant

(A.6) ξ = 1− r′bθ

4r′θ̂
,

so that E
(
r′θ̂
)
≈ ξr′θ. Note that ξ does not involve r′θ̂ because r′bθ is proportional to

r′θ̂. The degrees of freedom ν defined in Chapter 3 must now be adapted to incorporate

the bias-correction term. Again from a theorem in Hedges (2007), the distribution of
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(√
ξ δ̂AB/κ

)
can be approximated by a non-central t distribution with ν∗ degrees of

freedom and non-centrality parameter
(√

ξ δAB/κ
)
, where

(A.7) ν∗ =
2ξ2(r′θ̂)2

r′C(θ̂)r
.

It follows further that a bias-corrected effect size estimator is given by

(A.8) g∗AB = J(ν∗)×
√
ξ × δ̂AB,

where J(x) = 1− 3/(4x− 1), and that g∗AB has approximate variance

(A.9) Var(gAB) ≈ J(ν∗)2

[
ν∗κ2

ν∗ − 2
+ ξ δ2

AB

(
ν∗

ν∗ − 2
− 1

J(ν∗)2

)]
.

As with the singly-adjusted estimator, substituting g∗AB for δAB produces an estimate of

the variance of g∗AB.
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APPENDIX B

Distribution theory for direct observation recording procedures

B.1. Expectation of interval recording data

The expectations of the interval recording procedures can be derived by conditioning

on the state of the alternating renewal process (ARP) at the beginning of each inter-

val. First consider that the residual interim time at time-point t can be expressed as

B(t) =

N(t)∑
u=0

(Du + Eu)− t. In an equilibrium ARP, the conditional distribution of the

residual interim time, given that Y (t) = 0, is

(B.1) Pr (B(t) ≤ x|Y (t) = 0) =
1

λ

∫ x

0

F̃E(t)dt

(Kulkarni, 2010, Thm. 9.17). It follows that the expected value of a recorded datum

generated by partial interval recording is

E(Uk) =
1∑

a=0

Pr

[
0 <

∫ l−

0

Y

(
l +

(k − 1)L

K

)
dt

∣∣∣∣∣Y
(

(k − 1)L

K

)
= a

]
(B.2)

× Pr

[
Y

(
(k − 1)L

K

)
= a

]
= φ+ (1− φ) Pr

[
B

(
(k − 1)L

K

)
< l

∣∣∣∣Y ((k − 1)L

K

)
= 0

]
= φ+ ζ

∫ l−

0

F̃E(t)dt.
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The the reported datum Y P is the mean of the recorded data, and thus has expectation

equal to (B.2), as given in Table 5.3.

The expectation of a reported datum generated by whole interval recording can be

derived from the fact that the procedure is equivalent to applying partial interval recording

to the absence of the behavior rather than its presence. If E(Uk;FD(µ), FE(λ)) denotes

the expectation of Uk when D1 ∼ FD(µ) and E1 ∼ FE(λ), then

E(Wk;FD(µ), FE(λ)) = 1− E(Uk;FE(λ), FD(µ))(B.3)

= 1−

[
(1− φ) + ζ

∫ l−

0

F̃D(t)dt

]

= φ− ζ
∫ l−

0

F̃D(t)dt.

Further, E
(
Y W

)
= E(Wk), as given in Table 5.3.

B.2. Bounds for the bias of a partial interval recording datum

Although a partial interval recording datum is biased as a measure of prevalence, its

bias can be bounded under certain assumptions about the event durations and interim

times. Assume that µ∗L ≤ µ ≤ µ∗U and FE(l) ≤ p∗ for known µ∗L, µ∗U , and p∗. Let

B =
∫ l−

0
F̃E(t)dt, so that E

(
Y P
)

= µ+B
µ+λ

. It follows that the proportionate bias of Y P is

bounded by

B

µ∗U +B
≤

E
(
Y P
)
− φ

E (Y P )
≤ B

µ∗L +B
.
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Now, since FE(l) ≤ p∗, it follows that (1− p∗) ≤ F̃E(t) ≤ 1 for all t ≤ l, and further that

(1− p∗)l ≤ B ≤ l. Combining the two inequalities yields

(B.4)
(1− p∗)l

µ∗U + (1− p∗)l
≤

E
(
Y P
)
− φ

E (Y P )
≤ l

µ∗L + l
,

as given in (5.4).

A bound for the bias of a partial interval recording datum as a measure of incidence can

be constructed under assumptions about the maximum average event duration and the

distribution of interim times, following a similar argument as above. Assume that µ ≤ µ∗U

and FE(l) ≤ p∗ for known µ∗U and p∗. With B as previously defined, the proportionate

bias of Y P is bounded by

B − 1

B
≤

E
(
Y P
)
− ζ

E (Y P )
≤ µ∗U +B − 1

µ∗U +B
.

Since (1− p∗)l ≤ B ≤ l, it follows that

(B.5)
(1− p∗)l − 1

(1− p∗)l
≤

E
(
Y P
)
− ζ

E (Y P )
≤ µ∗U + l − 1

µ∗U + l
,

as given in (5.5).

B.3. Bounds for the log-interim ratio

Estimable bounds for the log-interim ratio ωλ can be constructed under assumptions

about the behavior stream process in both baseline and treatment phases. Assume that

the intervention does not change the average event duration, so that µ0 = µ1 = µ.

Further suppose that the interim times in each treatment condition follow exponential

distributions, so that FE (t|λt) = 1− exp (−t/λt), t = 0, 1. Denote the expected value of
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a partial interval recording datum made under condition t as

πPt = E
(
ȳPt
)

= 1− λt exp (−l/λt)
µ+ λt

.

Note that for fixed πPt ,

(B.6) µ = fπPt (λt) =
λt
[
exp (−l/λt)− 1 + πPt

]
1− πPt

,

with

∂fπPt
∂λt

=
exp (−l/λt)

1− πPt
+
l exp (−l/λt)
λt(1− πPt )

− 1 =
(µ+ l)λt + lµ

(λt)2 .

Because µ must be greater than zero, fπPt (λt) takes values in
(

−l
log(1−πPt )

,∞
)

and is strictly

increasing over its domain. Define g
(
·, πPt

)
= f−1

πPt
, so g

(
µ, πPt

)
= λt. The log-interim

ratio is therefore ωλ = ln g
(
µ, πP0

)
− ln g

(
µ, πP1

)
. Observe that

(B.7)
∂ωλ

∂µ
=
∂g
(
µ, πP0

)
/∂µ

g (µ, πP0 )
−
∂g
(
µ, πP1

)
/∂µ

g (µ, πP1 )
=

λ0

lµ+ (µ+ l)λ0
− λ1

lµ+ (µ+ l)λ1
.

Also note that

(B.8)
∂g
(
µ, πPt

)
∂πPt

=
−λt(µ+ λt)2

[lµ+ (µ+ l)λt] exp(−l/λt)
< 0

and

lim
µ→0

g
(
µ, πPt

)
=

l

− ln (1− πPt )
,

lim
µ→∞

g
(
µ, πPt

)
µ

= lim
µ→∞

1− πPt
exp [−l/g (µ, πPt )]− 1 + πPt

=
1− πPt
πPt

.
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Now suppose that πP0 > πP1 . It follows from (B.8) that λ0 < λ1 and further that

∂ωλ/∂µ from (B.7) is strictly decreasing in µ. Therefore

sup
µ>0

ωλ
(
µ, πP0 , π

P
1

)
= lim

µ→0

[
ln g

(
µ, πP0

)
− ln g

(
µ, πP1

)]
= cll

(
πP1
)
− cll

(
πP0
)

inf
µ>0

ωλ
(
µ, πP0 , π

P
1

)
= lim

µ→∞

[
ln g

(
µ, πP0

)
− ln g

(
µ, πP1

)]
= logit

(
πP1
)
− logit

(
πP0
)
,

by which (5.18) follows. If πP0 ≤ πP1 then, by a similar argument,

cll
(
πP1
)
− cll

(
πP0
)
< ωλ < logit

(
πP1
)
− logit

(
πP0
)
,

as given in (5.19). It is rather interesting that the bounds do not depend on the interval

length l.

B.4. Moments under an alternating poisson process

Table 6.1 reports the variance of the reported datum from five types of recording proce-

dures used for observation of free-operant behavior, under the assumptions of the alternat-

ing poisson process (APP). Here I provide derivations of these expressions. Throughout

this section, I assume that the event durations are exponentially distributed with mean µ

and that the interim times are also exponentially distributed with mean λ. As in Chapter

5, I denote the prevalence φ = µ
µ+λ

and the incidence ζ = 1
µ+λ

; for ease of notation, I also

employ an alternate parameterization where ρ = 1
µ

+ 1
λ

= ζ
φ(1−φ)

.
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Under the assumptions of the alternating poisson process, {Y (t), t ≥ 0} is a continuous

time Markov chain, having the property that

Pr(Y (s+ t) = 1|Y (s) = a, Y (r) : 0 ≤ r < s) = Pr(Y (s+ t) = 1|Y (s) = a)(B.9)

= Pr(Y (t) = 1|Y (0) = a)

for a ∈ {0, 1} and s, t ≥ 0 (Kulkarni, 2010, Thm. 6.1). Denote the transition probabilities

of this continuous time Markov chain by

p0(t) = Pr(Y (t) = 1|Y (0) = 0) = φ
(
1− e−ρt

)
(B.10)

p1(t) = Pr(Y (t) = 1|Y (0) = 1) = (1− φ)e−ρt + φ(B.11)

(ibid., Equation 6.17, p. 207).

B.4.1. Event counting

Because the APP is a special case of the alternating renewal process, the expectation

of a reported datum generated by an event counting procedure is equal to the incidence

times the session length: E
(
Y E
)

= ζL. The variance and higher moments of Y E can be

evaluated from the Laplace transform of its probability generating function. I proceed

as far as possible in general terms, before specializing the expressions to the case of the

alternating poisson process. LettingGu = Du+Eu for u = 1, 2, 3, ..., the Laplace transform

of G1 is f ∗G(s) = f ∗D(s)f ∗E(s). From Cox (1962, Eq. 3.2.6), the Laplace transform of the
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probability generating function is therefore

G∗(s, υ) =
1

s
+
ζ(υ − 1)[1− f ∗G(s)]

s2[1− υf ∗G(s)]
.

For a given session length L, the rth factorial moment of Y E is given by the rth derivative

of G(s, υ) with respect to υ, evaluated at s = L, υ = 1:

E

(
Y E!

(Y E − r)!

)
= G(r)(L, 1).

Thus, for r = 1, 2, 3, ...,

G∗(r)(s, υ) =
ζr! [1− f ∗G(s)]2 [f ∗G(s)]r−1

s2 [1− υf ∗G(s)]r+1 , G∗(r)(s, 1) =
ζr! [f ∗G(s)]r−1

s2 [1− f ∗G(s)]r−1

and the Laplace transform of the variance (the second cumulant) of Y E is therefore

(B.12) κ∗2(s) = G∗(2)(s, 1) +
ζ

s2
− 2ζ2

s3
=

2ζf ∗D(s)f ∗E(s)

s2 [1− f ∗D(s)f ∗E(s)]
+
ζ

s2
− 2ζ2

s3
,

which can be evaluated for specific cases.

For the alternating poisson process, the Laplace transforms of D1 and E1 are

f ∗D(s) =
1

µs+ 1
, f ∗E(s) =

1

λs+ 1
.
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From (B.12), the Laplace transform of the variance (the second cumulant) is therefore

κ∗2(s) =
2ζ2

s3
(
s+ ζ

φ(1−φ)

) +
ζ

s2
− 2ζ2

s3

=
ζ

s2
+ 2ζφ(1− φ)

φ(1− φ)

ζs
− φ(1− φ)

ζ
(
s+ ζ

φ(1−φ)

) − 1

s2

 ,

It follows that

Var(Y E) = κ2(L) = ζL
[
φ2 + (1− φ)2

]
+ 2φ2(1− φ)2

[
1− exp

(
−ζL

φ(1− φ)

)]
.(B.13)

For long session lengths, Var
(
Y E
)

will be approximately proportional to its mean.1

B.4.2. Continuous recording

The reported datum from a continuous recording procedure provides an unbiased estimate

of prevalence:E
(
Y C
)

= φ. The variance of Y C can be derived directly by using the

properties of continuous time Markov chains:

Var
(
Y C
)

= E
[
(Y C)2

]
− φ2

i(B.14)

=
1

L2
E

[∫ L−

0

∫ L−

0

Y (s)Y (t)dsdt

]
− φ2

=
1

L2

∫ L−

0

∫ L−

0

E [Y (s)Y (t)] dsdt− φ2

=
2

L2

∫ L−

0

∫ t

0

Pr[Y (s) = 1] Pr[Y (t) = 1|Y (s) = 1]dsdt− φ2

1Rogosa and Ghandour (1991, p. 184) proposed to approximate (B.13) using:

Var(Y E) ≈ ζL
[
φ2 + (1− φ)2

]
+ 2φ2(1− φ)2.
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=
2

L2

∫ L−

0

∫ t

0

φp1(t− s)dsdt− φ2

=
2φ

L2

∫ L−

0

∫ t

0

[
(1− φ)e−ρ(t−s) + φ

]
dsdt− φ2

=
2φ(1− φ)

ρL

(
1− 1− e−ρL

ρL

)

=
2φ2(1− φ)2

ζL

1−
φ(1− φ)

[
1− exp

(
−ζL
φ(1−φ)

)]
ζL

 .

Note that if ζL
φ(1−φ)

is large, then Var
(
Y C
)

will be approximately proportional to φ2(1 −

φ)2.2

B.4.3. Momentary time sampling

The moments of the reported datum from a momentary time sampling procedure can

be derived by considering the recorded data X1, ..., XK . First, observe that E(Xk) =

E[Y (kL/K)] = φ, and so the reported datum provides an unbiased estimate of prevalence:

E
(
Y M
)

= φ. To find the variance of Y M , note that for k > j,

Cov(Xj, Xk) = Pr(Xj = 1) [Pr(Xk = 1|Xj = 1)− Pr(Xk = 1)]

= φ [p1((k − j)L/K)− φ]

= φ(1− φ)e−ρ(k−j)L/K = φ(1− φ) exp

(
−ζ(k − j)L
φ(1− φ)K

)
.

2Rogosa and Ghandour (1991, p. 230) gave the following approximate expression for the variance of Y C :

Var(Y C) ≈ 2φ(1− φ)

ρ2L2

(
ρL+

φ(1− φ)(1− 2φ)

[(1− φ)2 + φ2]2

)
.
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Therefore

Var(Y M) =
1

K2

[
K∑
k=1

Var(Xk) + 2
K−1∑
k=1

(K − k)Cov(X1, X1+k)

]
(B.15)

=
φ(1− φ)

K

[
1 +

2

K

K−1∑
k=1

(K − k) exp

(
−ζkL

φ(1− φ)K

)]

A similar approach could be followed to derive the variance of Y M under a non-exponential

equilibrium ARPs, though the transition probabilities pa(t) might involve considerably

more complex expressions.3

Using a result from Good (1961), Rogosa and Ghandour (1991, Eq. 5.1) offered the

following approximation to (B.15):

(B.16) Var(Y M) ≈ φ(1− φ)

K

 2

1− exp
(

−ζL
φ(1−φ)K

) − 1

 .
This approximation is the limit of KVar

(
Y M
)

as K and L increase in fixed proportion,

that is, as momentary time samples are taken at fixed intervals for an increasingly long

session.

B.4.4. Partial interval recording

The expectation of a reported datum generated by a partial interval recording procedure

can be found by evaluating (B.2) using the specific form of the cumulative distribution

function FE. Recall that l denotes the length of the active portion each interval. For the

3Simple expressions for the Laplace transforms of the transition probabilities are available (see Kulkarni,
2010, Thm. 9.14), but these are generally difficult to invert analytically.
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alternating poisson process, F̃E(t) = exp (l/λ), and so

(B.17) E
(
Y P
)

= E(Uk) = 1− (1− φ) exp

(
−ζl

(1− φ)

)
=
µ+ λ

(
1− e−l/λ

)
µ+ λ

.

To find the variance of the Y P , I first evaluate E(UhUk) for 1 ≤ h < k ≤ K. Let

t0 = (h − 1)L/K denote the beginning of the hth interval, t1 = t0 + l denote the end of

the active portion of the hth interval, and t2 = (k − 1)L/K denote the beginning of the

kth interval.

I will first need to find Pr (Y (t1) = 1|Uh = 1). Observe that

Pr (Y (t1) = 1, Uh = 1|Y (t0) = 1) = Pr (Y (t1) = 1|Y (t0) = 1)

= p1(l) = (1− φ)e−ρl + φ,

Pr (Y (t1) = 1, Uh = 1|Y (t0) = 0) = Pr(Y (t1) = 1 ∩ Y (s) = 1, t0 ≤ s < t1|Y (t0) = 0)

=

∫ l−

0

p1 (l − t) fE(t)dt

= φ
(
1− e−ρl

)
.

Thus,

Pr (Y (t1) = 1 ∩ Uh = 1) = φPr (Y (t1) = 1, Uh = 1|Y (t0) = 1)

+ (1− φ) Pr (Y (t1) = 1, Uh = 1|Y (t0) = 0) = φ

Pr (Y (t1) = 1|Uh = 1) =
φ

1− (1− φ)e−ρφl
.
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Conditioning on Y (t1),

Pr (Y (t2) = 1|Uh = 1) = Pr (Y (t1) = 0|Uh = 1) p0(t2 − t1)

+ Pr (Y (t1) = 1|Uh = 1) p1(t2 − t1)

= φ+
φ(1− φ)e−ρ(t2−t1)−ρφl

1− (1− φ)e−ρφl
.

Now conditioning on Y (t2),

Pr (Uk = 1|Uh = 1) =
1∑

a=0

Pr (Y (t2) = a|Xh = 1)Pr (Uk = 1|Y (t2) = a)

= 1− e−ρφl + e−ρφ; Pr (Y (t2) = 1|Uh = 1)

= 1− (1− φi)e−ρφl +
φ(1− φ)e−ρ(t2−t1)−2ρφl

1− (1− φ)e−ρφl
.

It therefore follows that

Cov(Uh, Uk) = Pr(Uh = 1) [Pr (Uk = 1|Uh = 1)− Pr(Uk = 1)]

= φ(1− φ) exp [−ρ(k − h)L/K − (2φ− 1)ρl] .

Thus,

Var
(
Y P
)

=
1

K
Var(U1) +

2

K2

K−1∑
k=1

(K − k)Cov(U1, Uk+1)(B.18)

=
1

K

[
1− (1− φ)e−ρφl

]
(1− φ)e−ρφl

×

[
1 +

2φe(1−φ)ρl

K [1− (1− φ)e−ρφl]

K−1∑
k=1

(K − k) exp

(
−ρkL
K

)]
.
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Note that the derivation of this expression depends strongly on the independence of in-

crements in the alternating poisson process; this will inhibit generalizations to alternating

renewal processes using event duration and interim time distributions other than expo-

nentials.

Finally, observe that if the interval length L/K is held fixed, then as the number of

intervals K increases,

(B.19)

Var
(
Y P
)
≈ 1

K

[
1− (1− φ)e−ρφl

]
(1− φ)e−ρφl

(
1 +

2φe−ρL/K+ρ(1−φ)l

[1− (1− φ)e−ρφl] (1− e−ρL/K)

)
.

B.4.5. Whole interval recording

The expectation of a reported datum generated by whole interval recording can be found

directly from (B.3) to be

(B.20) E
(
Y W

)
= E(W1) = φ exp

(
−ζl
φ

)
=
µe−l/µ

µ+ λ
.

The variance of Y W can be found by using the fact that whole interval recording is

equivalent to partial interval recording for the absence of a behavior, which implies that

Var
(
Y W ;µ, λ

)
= Var

(
Y P ;λ, µ

)
. Thus,

(B.21) Var
(
Y W

)
=

1

K
φe−ρ(1−φ)l

(
1− φe−ρ(1−φ)l

)
×

[
1 +

2(1− φ)eφρl

K [1− φe−ρ(1−φ)l]

K−1∑
k=1

(K − k) exp

(
−ρkL
K

)]
.
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For fixed interval length L/K and large K,

(B.22) Var
(
Y W

)
≈ 1

K
φe−ρ(1−φ)l

(
1− φe−ρ(1−φ)l

)(
1 +

2(1− φ)e−ρL/K+ρφl

(1− φe−ρ(1−φ)l) (1− e−ρL/K)

)
.
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APPENDIX C

Equilibrium alternating renewal process simulations

This appendix collects several sets of simulation results regarding proposed effect size

estimators for behavioral observation data, as described in Chapters 5 and 6. All of the

studies involved simulating behavior stream data based on an alternating renewal process,

then calculating reported data points based on the realized behavior stream.

Recall that the alternating renewal process entails only first-moment assumptions

about the event duration and interim time distributions. For purposes of simulating the

behavior stream, it was necessary to choose specific parametric forms for these distribu-

tions. In the simulations described in the following sections, I considered three different

possibilities. First, I simulated an alternating poisson process in which event durations

and interim times are both exponentially distributed, with rates 1/µ and 1/λ, respec-

tively; these simulations are labeled “Exp-Exp.” Second, I used gamma-distributed event

durations and interim times; specifically, I assumed that event durations are distributed

as Γ(3, µ/3) and interim times are distributed as Γ(3, λ/3), where Γ(k, θ) is a gamma

distribution with shape k and scale θ. These simulations are labeled “Γ3-Γ3.” Finally, I

assumed that event durations have constant duration µ and that interim times follow a

Γ(3, λ/3) distribution; these simulations are labeled “Const-Γ3.” For each of the simula-

tions, I used within-phase sample sizes of n = 4, 8, 12, corresponding to short, medium,

and long phase lengths. I set the total session length equal to L = 1, so that values of

incidence are to be interpreted as the frequency of behaviors per session. For momentary
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time sampling and interval recording procedures, I used K = 30 intervals per session; also,

I used l = L/K = 1/30 as the active interval length for the interval recording procedures,

which corresponds to no rest period in between active intervals.

C.1. Basic effect size estimators

In Section 5.3, I proposed several estimators for the log-incidence ratio, log-prevalence

ratio, and log-prevalence odds ratio for use under the assumption that the behavior stream

is stable within phases. Since all of the estimators are differences between transforma-

tions (non-linear functions) of within-phase moments and observations are assumed to

be independent across phases, it suffices to evaluate the bias and precision of the trans-

formed within-phase moments, rather than simulating the estimators directly. For in-

stance, rather than simulating continuous recording data with a baseline prevalence φ0

and treatment-phase prevalence φ1 = ωφφ0 for various values of φ0 and ωφ, I simulate

event-counting data from a single phase with prevalence φ, for various values of φ, and

evaluate the bias of the log-mean prevalence: Bias
[
ln
(
ŷC
)]

= E
(
ln ŷC

)
− lnφ. For given

values of φ0, φ1, the bias of the prevalence ratio estimator FC is then equal to the difference

in the biases of the component estimators for the log-mean prevalence.

Figure C.1 plots the bias of two estimators for the log-incidence based on event-

counting data, varying the true incidence between ζ = 2 and ζ = 40 (on the horizontal

axis) and the true prevalence between φ = 0.05 and φ = 0.50 (line colors correspond to

different values of prevalence). The columns of the lattice correspond to different values

of the within-phase sample size n, while the rows of the lattice correspond to different

event duration and interim time distributions in the ARP used to simulate the behavior
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Figure C.1. Bias of log-incidence estimators using event-counting data, as
a function of incidence ζ, prevalence φ, within-phase sample size n, and
distributional assumptions.

stream.1 The solid lines correspond to the moment estimator used to construct FE, while

the dashed lines correspond to the bias-corrected estimator used to construct FE
2 . In

both cases, I used cE = 1/(2n) to correct observed zero-mean outcomes. It can be seen

that the biases of the moment estimator are quite small except when the true incidence is

low and the sample size is small. The bias-corrected estimator is very close to unbiased.

The two estimators have practically identical mean-squared error (not shown), leading

me to prefer the bias-corrected estimator. The approximate variance estimator V E
L given

in (5.8) is also close to unbiased for the actual variance of the bias-corrected effect size

estimator LE2 .

1Note that the vertical scale of the graphs varies across rows of the lattice.
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Figures C.2a and C.2b plot the bias of estimators for the log-prevalence based on

continuous recording data and momentary time sampling data, respectively. The true

prevalence varies between φ = 0.05 and φ = 0.95 (on the horizontal axis), while the true

incidence varies between ζ = 5 and ζ = 40 (in these figures, line colors correspond to

different values of incidence); within-phase sample size n and distributional assumptions

are varied on columns and rows of the lattice, respectively.2 For continuous recording

data, I used cC = 1/(2ζLn) to correct observed zero-mean outcomes (which were very

rare); for momentary time sampling data, I used cM = 1/(2Kn). The bias of the moment

estimator is fairly small in each case, except when the true prevalence is close to zero and

the sample size is small. Note that the magnitude of the bias depends on incidence and

on the distributional assumptions of the ARP, with larger biases in the Exp-Exp model

than in the Γ3−Γ3 or Const−Γ3 models; other possible distributional assumptions could

lead to larger biases in the moment estimator. For both types of data, the bias-corrected

estimator is very close to unbiased. Just as with event counting data, the estimators have

comparable mean-squared error, leading me to prefer the bias-corrected estimator.

The approximate variance estimator performs adequately for response ratios based on

continuous recording or momentary time sampling data. Averaging across the parameter

space, the approximate variance estimator V C
L is close to unbiased for the actual variance

of the bias-corrected effect size estimator LC2 based on continuous recording data. A

similar pattern holds for momentary time sampling data, though the variance estimator

V M
L tends to over-estimate the actual variance of LM2 by as much as 10% when the true

prevalence is very low.

2Note that the vertical scale of the graphs varies across rows of the lattice.
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Figure C.2. Bias of log-prevalence estimators using (a) continuous recording
data and (b) momentary time sampling data, as a function of prevalence φ,
incidence ζ, within-phase sample size n, and distributional assumptions.
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Figure C.3. Bias of log-prevalence odds estimators using (a) continuous
recording data and (b) momentary time sampling data, as a function of
prevalence φ, incidence ζ, within-phase sample size n, and distributional
assumptions.
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Figures C.3a and C.3b plot the bias of estimators for the log-prevalence odds based on

continuous recording data and momentary time sampling data, respectively; these figures

are constructed in the same fashion as Figure C.2. The bias of the moment estimator

based on continuous recording data is fairly small, except when the true incidence is low

and the sample size is small, and is approximately proportional to φ− 0.5. The moment

estimator based on momentary time sampling data has comparatively larger biases when

the true prevalence is close to zero or one. For both types of data, the bias-corrected

estimator is very close to unbiased and has mean-squared error that is slightly smaller

than the moment estimator.

C.2. Prevalence trend models

The next set of simulations examines the bias of proposed estimators that account for

linear trends in log-prevalence odds, based on data collected using continuous recording

or momentary time sampling. Rather than simulating full single-case designs, I generate

data from a single phase and examine the bias in the estimated level and trend regression

coefficients. I also examine the bias in the predicted value of the log-prevalence odds

at a fixed point, extrapolating the estimated trend by one quarter of the length of the

data series. Together, these analyses give an indication of the bias in estimates of log-

prevalence odds ratios, which are differences between linear combinations of the regression

coefficients, estimated based on data from separate phases.

In order to fully describe the data generating model, I need to specify not only a model

for prevalence, but also a model for incidence and parametric forms for the event duration

and interim time distributions FD and FE. I consider a linear model for prevalence. For
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a series of length n, define

(C.1) tj = (2j − n− 1)/(n− 1),

so that the time trend is centered at the mid-point of the series, and the first and last

observations in the series have values t1 = −1 and tn = 1, respectively. Let φ∗ be a given

value of prevalence and let ζ∗ be a given value of incidence, both at the mid-point of the

series. I use the following model for prevalence:

(C.2) logit (φj) = β0 + β1tj,

j = 1, ..., n, where β0 = logit(φ∗) and β1 measures the linear change in the log-odds. A

further target parameter is the log-prevalence odds at one quarter of the series length

beyond the final observation; denote this estimand ηJ = β0 + 1.5× β1.

I examine two models for the incidence. In the first model, indicated by I = 0, I

assume that the mean event duration is held constant as prevalence changes. In the

second model, indicated by I = 1, I assume that incidence is held constant as prevalence

changes. These models can be summarized as

(C.3) ln ζj = ln ζ∗ + (1− I) (lnφj − lnφ∗)

for j = 1, ..., n. Finally, for the event duration and interim time distributions, I examine

a model in which both FD and FE are exponential (i.e., an alternating Poisson process;

this is labeled G = Exp-Exp in the results) and a model in which both FD and FE follows

gamma distributions with shape parameters equal to 3 (this is labeled G = Γ3-Γ3 in the
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Table C.1. Simulation design for prevalence trend model

Parameter Definition # Levels Levels

φ∗ Prevalence at tj = 0 9 0.1 (0.1) 0.9
ζ∗ Incidence at tj = 0 3 5, 10, 20
β1 Change in log-prevalence odds 3 0.0, 0.5, 1.0
I Indicator of incidence model 2 0, 1
n Series length 3 4, 8, 12
G Generating distributions 2 Exp-Exp, Γ3-Γ3

results). The reported datum from occasion j is simulated by applying measurement

procedure r to a realization of a behavior stream that follows an ARP with specified

values of prevalence, incidence, and generating distributions:

(C.4) Y r
j ∼Mr (ARP [φj, ζj, FD, FE]) ,

where Mr() indicates the application of measurement procedure r to the behavior stream,

r ∈ {C,M}. Table C.1 summarizes the design of the simulation, which is a 9 × 3 × 3 ×

2× 3× 2 factorial.

For each combination of factor levels, I simulate 20,000 series and calculate the follow-

ing statistics. First, I estimate the generalized linear model given in (C.2). For continuous

recording data, I compare two different variance functions; one is based on the binomial

variance function, V (x) = x(1 − x), and the other is based on the Wedderburn variance

function, V (x) = x2(1 − x)2. For momentary time sampling data, I consider only the

binomial variance function. I calculate the bias and root mean-squared error (rmse) of

the estimated regression coefficients, β̂0 and β̂1, and of the predicted log-prevalence odds

ηJ . For each estimator, I calculate two different variance estimators, the model-based

variance given in (6.8) and the heteroskedasticity-robust estimator given in (6.7).
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C.2.1. Bias and efficiency of log-prevalence odds estimators

Figures C.4a and C.4b display the average bias of the estimated regression coefficients

and predicted log-prevalence odds when based on data from continuous recording and

momentary time sampling, respectively; the average bias is calculated across levels of the

mid-point incidence ζ∗, the incidence model I, and the generating distributions G.3 For

continuous recording data, the estimator of β0 has a small-sample bias that is approxi-

mately proportional to the true value, independent of β1 and regardless of which variance

function is used; the bias is fairly small, even for the smallest sample size considered. The

estimator of the slope β1 has more pronounced, positive bias at the smallest sample size,

also approximately proportional to the true value; here, use of the Wedderburn variance

function produces greater bias than the binomial variance. For momentary time sampling

data, the estimators of β0 and β1 have biases that are approximately proportional to the

true values, but generally larger in magnitude than those based on continuous recording

data.

For both types of data, the biases are more pronounced when the generating process

is more variable. Among the factor levels considered, the biases of β̂0 and β̂1 are more

pronounced when the incidence is ζ∗ = 5 and when the generating distribution is G =

Exp-Exp. The biases are also more pronounced when the incidence is allowed to vary with

prevalence (I = 0). In order to provide a sense of the most extreme levels of bias, Figures

C.5a and C.5b plot the biases of each estimator, based on continuous recording data and

3In each figure, the upper row of the lattice displays the bias of β̂0, the middle row displays the bias of

β̂1, and the lower row displays the bias of η̂J . The columns of the lattice correspond to different values of
the sample size n; the x-axis of each panel corresponds to φ∗, and different colors correspond to different
true values of β1. In Figure C.4a, the solid lines represent the bias of estimators based on the binomial
variance function and the dashed lines represent the bias of estimators based on the Wedderburn variance
function.



353

n = 4 n = 8 n = 12

−0.02

0.00

0.02

0.00
0.01
0.02
0.03
0.04

−0.02

0.00

0.02

0.04

β
0

β
1

η
J

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

φ*

B
ia

s

β1

0

0.5

1

Variance function

binomial

Wedderburn

(a) Continuous recording data

n = 4 n = 8 n = 12

−0.10

−0.05

0.00

0.05

0.10

0.00

0.02

0.04

0.06

0.08

−0.1

0.0

0.1

0.2

β
0

β
1

η
J

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

φ*

B
ia

s

β1

0

0.5

1

(b) Momentary time sampling

Figure C.4. Average bias of level, slope, and log-prevalence odds estimators
based on (a) continuous recording data and (b) momentary time sampling
data, as a function of mid-point prevalence φ∗, slope coefficient β1, and
within-phase sample size n.
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Figure C.5. Maximal bias of level, slope, and log-prevalence odds estimators
based on (a) continuous recording data and (b) momentary time sampling
data, for n = 4, G = Exp-Exp, I = 0, and ζ∗ = 5.

momentary time sampling data, respectively, when n = 4, ζ∗ = 5, G = Exp-Exp, and

I = 0. The biases are quite pronounced, particularly those for β1, where the estimator

tends to be upwardly biased by as much as 10%.

For modeling continuous recording data, it would seem that the binomial variance

function is preferable to the Wedderburn variance function if bias is the only criteria,

though the differences in bias between the two are mostly small. If precision is also taken

into account, the differences are smaller still. Figure C.6 plots the average rmse of β̂0, β̂1,

and η̂J versus φ∗ when the estimators are based on each variance function; the average is

taken across levels of β1, mid-point incidence ζ∗, the incidence model I, and the generating
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Figure C.6. Average root mean-squared error of level, slope, and log-
prevalence odds estimators based on continuous recording data.

distributions G. The average differences in rmse between the two variance functions are

negligible.

C.2.2. Bias and efficiency of variance estimators

For ease of presentation, I examine the performance of the variance estimators for the log-

prevalence odds ηJ , rather than for the regression coefficient estimators separately. Figures

C.7a and C.7b depict the average relative bias of the model-based and robust variance

estimators (VM(η̂J) and VR(η̂J)) based on continuous recording and momentary time

sampling data, averaging over β1, ζ∗, and G.4 The average relative bias is plotted versus

φ∗, with the columns of the lattice corresponding to sample size n and the rows of the

lattice corresponding to the incidence model I. For n = 4, the robust variance estimator

based on momentary time sampling is not depicted because its relative bias is orders of

magnitude larger than that of the model-based estimator. At most combinations of factor

4For variance estimator V corresponding to the statistic η̂J , I calculate the relative bias as
E [V (η̂J)] /Var(η̂J).
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Figure C.7. Average relative bias of model-based and robust variance esti-
mators for log-prevalence odds based on (a) continuous recording data and
(b) momentary time sampling data.
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levels, the robust variance estimator is less biased than the model-based estimator, except

for momentary time sampling when n = 4. Note in particular that VR remains close to

unbiased when the analytic model for the variance differs to a greater degree from the

data-generating model (viz., when I = 0).

The results in Figure C.7a also reflect on the choice between variance functions for

modeling continuous recording data. Recall that the assumption indicated by I affects

the degree to which the assumed variance structure is mis-specified. When I = 1 (bottom

row), the incidence is approximately constant and so the variance model may be considered

approximately correct. Note that in this case, VM is approximately unbiased when based

on the Wedderburn variance function, whereas its bias depends on φ∗ when based on the

binomial variance function; this is true even at the largest sample size considered. This

suggests that the Wedderburn variance function may be useful because it provides more

accurate variance estimation, even if the resulting effect size estimator has slightly larger

variance. Of course, when I = 0 and the variance model is more severely mis-specified,

both variance functions lead to over-estimation of the true variance.

Figure C.8 compares the relative root mean-squared error of the two variance estima-

tors, for data based on continuous recording (left panel) and momentary time sampling

(right panel).5 The average is taken across the levels of φ∗, β1, ζ∗, I, and G. For n = 4, the

robust variance estimator based on momentary time sampling is again omitted because

its relative bias is orders of magnitude larger than that of the model-based estimator. For

both types of data, the robust variance estimator is inefficient relative to the model-based

variance estimator. Although the robust variance estimator is asymptotically consistent,

5For variance estimator V corresponding to a statistic η̂J , I calculate the relative root mean-squared error

as
√

E2 [V (η̂J)−Var(η̂J)]/Var(η̂J).
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Figure C.8. Average root mean-squared error of model-based and robust
variance estimators for log-prevalence odds.

it appears that its greater sampling variability swamps its reduced bias. Conversely,

though the model-based variance estimator is not necessarily asymptotically consistent,

its bias and sampling variability appear to be small enough that its use is recommended.

C.3. Incidence trend models

The next set of simulations examines the bias of proposed estimators for log-linear

trends in incidence, based on data collected using event counting. Just as in previous

sections, I generate data from a single phase and examine the bias in the estimated level

and trend regression coefficients, as well as the bias in the predicted value of the log-

incidence one quarter of the length of the data series beyond the final observation. I

assume a linear model for the log-incidence, in which

(C.5) log (ζj) = β0 + β1tj,
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Table C.2. Simulation design for incidence trend model

Parameter Definition # Levels Levels

ζ∗ Incidence at tj = 0 8 5 (5) 40
φ∗ Prevalence at tj = 0 2 0.1, 0.3
β1 Change in log-incidence 3 0.0, 0.5, 1.0
n Series length 3 4, 8, 12
G Generating distributions 3 Exp-Exp, Γ3-Γ3, Const-Γ3

j = 1, ..., n, where tj is defined as in (C.1), β0 = log(ζ∗) for ζ∗ measured at the mid-point

of the series, and β1 measures the linear change in the log-incidence. I assume that mean

event duration is held constant as incidence changes, so that φj = φ∗ζj/ζ
∗, j = 1, ..., n,

for φ∗ measured at the mid-point of the series. I examine three alternatives for event

duration and interim time distributions: an alternating Poisson process in which both

FD and FE follow exponential distributions (G = Exp-Exp), a process in which both FD

and FE follows gamma distributions with shape parameters equal to 3 (G = Γ3-Γ3), and

a process in which event duration is constant and FE follows a gamma distribution with

shape parameter 3 (G = Const-Γ3). The reported datum from occasion j is simulated by

applying event counting to a realization of a behavior stream following an ARP process

with specified values of prevalence, incidence, and generating distributions:

(C.6) Y E
j ∼ME (ARP [φj, ζj, FD, FE]) .

Table C.2 summarizes the design of the simulation, which is a 8× 2× 3× 3× 3 factorial.

For each combination of factor levels, I simulate 20,000 series. I calculate the bias and

rmse of the estimated regression coefficients, β̂0 and β̂1, as well as an extrapolated log-

incidence η̂J = β̂0 + 1.5β̂1. For each of these statistics, I calculate two different variance
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Figure C.9. Average bias of level and slope estimators as a function of mid-
point prevalence ζ∗, slope coefficient β1, and within-phase sample size n.

estimators, the model-based variance given in (6.8) and the heteroskedasticity-robust

estimator given in (6.7).

C.3.1. Bias of log-incidence estimators

Figure C.9 displays the average bias of the estimated regression coefficients and predicted

log-incidence η̂J ; the average bias is calculated across levels of the mid-point prevalence

φ∗ and the generating distributions G. The estimator of β0 has a small, negative bias

that decreases as ζ∗ increases and is approximately independent of β1. The estimator

of the slope β1 has a small, positive bias, which also decreases as ζ∗ increases. These

biases are partially off-setting, yielding an estimator for ηJ that has bias of less than 1%

when the mid-point prevalence level is greater than 10 incidents per session. Just as with
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Figure C.10. Average relative bias of model-based and robust variance es-
timators for log-incidence odds based on event counting data.

continuous recording and momentary time sampling data, the biases are more pronounced

when the generating process is more variable. Among the factor levels considered, the

biases of β̂0 and β̂1 are more pronounced at the smaller level of prevalence φ∗ = 0.1 and

when the generating distribution is G = Exp-Exp.

C.3.2. Bias and efficiency of variance estimators

For ease of presentation, I examine the performance of the variance estimators for the

log-incidence ηJ , rather than for the regression coefficient estimators separately. Figure

C.10 depicts the average relative bias of the model-based and robust variance estimators

(VM(η̂J) and VR(η̂J)), averaging over ζ∗, φ∗, and G. The average relative bias is plotted
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Figure C.11. Average root mean-squared error of model-based and robust
variance estimators for log-prevalence odds.

versus β1, for increasing sample size n. The relative bias of both variance estimators

depends on the generating distribution and on β1. For G ∈ {Exp − Exp,Γ3 − Γ3}, the

model-based estimator has a moderate, positive relative bias while the robust estimator

is closer to unbiased. When G = Const − Γ3, the variance model is more severely mis-

specified, which creates large biases in the model-based estimator; the robust estimator

is also affected, but its bias remains smaller.

Figure C.11 compares the relative root mean-squared error of the two variance estima-

tors. The average is taken across the levels of ζ∗, β1, and φ∗. Despite its smaller biases,

the robust variance estimator remains inefficient relative to the model-based variance es-

timator. Although the robust variance estimator is asymptotically consistent, it appears

that its increased sampling variability makes it too large for it to be of use. Conversely,

though the model-based variance estimator is not necessarily asymptotically consistent,

its bias and sampling variability appear to be small enough that its use is recommended,

at least when the variance model is not drastically mis-specified.
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C.4. Prevalence dependence models

This section describes a set of simulations involving models in which the latent values

of prevalence are serially dependent from session to session. I examine the performance

of log-prevalence odds estimators based on continuous recording or momentary time sam-

pling procedures, both of which produce direct measures of prevalence. As in previous

simulations, I generate data from a single phase rather than simulating a full single-case

design.

I assume that the marginal distribution of the reported data is stable, so that β =

logit
[
E
(
Y r
j

)]
= logit (πr) for r ∈ {C,M}. I assume that incidence is constant from

session to session and that dependence between sessions arises due to serial correlation in

values of prevalence. Specifically,

(
Y r
j |νj

)
∼Mr (ARP [φj, ζj])

ζj = ζ

logit (φj) = β∗ + νj, νj ∼ N
(
0, σ2

)
where ν1, ..., νn follow an AR(1) serial dependence model with auto-correlation ρ. The

conditional mean β∗ is defined implicitly by πr = E
[
(1 + exp (−β∗ − νj))−1]. For the

event duration and interim time distributions, I use an alternating Poisson process model

in which both FD and FE are exponential.

Table C.3 summarizes the design of the simulation. For each combination of factor

levels, I simulate 40,000 series and calculate the following statistics. First, I calculate the

marginal estimator β̂I and model-based variance estimator VR, both of which are based
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Table C.3. Simulation design for prevalence dependence model

Parameter Definition # Levels Levels

πC Expected prevalence 5 0.1 (0.1) 0.5
ζ Incidence 2 5, 20
σ2 Latent variability 4 0.125, 0.250, 0.500, 1.000
ρ Latent auto-correlation 3 0.2, 0.5, 0.8
n Series length 5 8, 12, 16, 20, 24

- Order of approximation 2 1, 2
- Estimating equation 2 FML, RML

on the assumption that repeated measures are independent. In the stable phase model

under consideration, β̂I is simply the logit of the mean, and VR is given in (6.8). Second,

I calculate the theoretically optimal linear estimator β̂opt = logit
[
1′Σ−1

r Yr/
(
1′Σ−1

r 1
)]

,

with Σr based on the empirical distribution of the 40,000 simulated series. Third, for

a subset of 1,000 simulations, I calculate several different estimators for the variance of

β̂I as given in (6.21). For continuous recording or momentary time sampling data, the

estimating equation for the nuisance parameters is based on an approximation to the

true covariance structure of the data. In the simulations, I compare the performance of

the first-order approximation (6.16) to the second-order approximation (6.17). For each

approximation, I compute nuisance parameter estimates using both the full Gaussian

pseudo-likelihood estimating equation (6.20), denoted as FML, and the restricted version

(6.23), denoted as RML. I use the Wedderburn variance function for continuous recording

data and the binomial variance function for momentary time sampling data.
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Figure C.12. Average bias of the independence estimator β̂I based on serial
dependence model for (a) continuous recording and (b) momentary time
sampling data.
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Figure C.13. Average relative efficiency of β̂I versus β̂opt based on contin-
uous recording (left panel) or momentary time sampling data (right panel)
in the stable-phase model, for varying values of latent variability σ2 and
latent auto-correlation ρ.

C.4.1. Bias and efficiency of log-prevalence odds estimators

Figure C.16 plots the average bias of the independence estimator β̂I versus the expected

prevalence level πC , for varying levels of latent variability, auto-correlation, and sample

size. Results for continuous recording and momentary time sampling are very similar,

and so I focus on the former. The bias of the independence estimator depends strongly

on the level of latent variability, with higher variability leading to larger bias that is

approximately proportional to the logit of πC . The bias depends to a lesser extent on

the level of latent autocorrelation, with higher autocorrelation leading to larger bias. In

combination, the effect of a highly variable and highly dependent latent process leads to

moderate bias even for the largest sample size considered. The average bias of the optimal

linear estimator β̂opt is nearly identical to that of β̂I , and so it is not displayed.
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To understand the efficiency of the independence estimator, I compared its root mean-

squared error to that of the theoretically optimal linear estimator. I calculate relative ef-

ficiency as
√

E[(β̂opt − β)2]/E[(β̂I − β)2]. Figure C.13 plots the average relative efficiency

of the independence estimator versus sample size, for varying levels of latent variability

and auto-correlation and for both continuous recording and momentary time sampling

data. The degree of latent autocorrelation is the main factor determining relative effi-

ciency. Except for highly autocorrelated processes, the independence estimator is nearly

as efficient as the optimal linear estimator, with average relative efficiency of over 97%

even for ρ = 0.5. The relative efficiency is also affected by latent variability, though this

may be partly a consequence of the bias of both estimators at high levels of σ2. Based on

these results, it appears reasonable to use β̂I as a point estimate rather than one where

the weight matrix is based on estimated nuisance parameters. I therefore study the per-

formance of variance estimators for β̂I rather than for an estimator involving iterative

evaluation of estimating equations, which substantially reduces computational intensity.

C.4.2. Bias and efficiency of variance estimators

Figure C.14 compares the average relative bias of the FML variance estimators based

on 1st and 2nd order approximations to the covariance; the naive variance estimator,

which does not account for possible serial dependence, is also plotted. The average is

taken across levels of πC and ζ. The relative bias of the RML variance estimators are not

displayed because they are severely biased. For both measurement procedures, the naive

estimator underestimates the true variance of β̂I to an extent that depends on both σ2

and ρ; it remains biased even as sample size increases. The 1st-order FML estimator also
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Figure C.14. Average relative bias of the 1st- and 2nd-order FML variance
estimators and the naive variance estimator, based on serial dependence
model for (a) continuous recording and (b) momentary time sampling data.
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tends to underestimate the true variance to an extent that depends on σ2 and ρ, but the

bias decreases as sample size increases. The 2nd-order FML estimator performs similarly,

but appears to overestimate the true variance for larger sample sizes. For series of length

n = 24, both FML estimators perform reasonably except when the latent autocorrelation

is very large. Across the parameter space, the 1st order FML estimator has lower rmse

(not depicted), and so may be preferred on that basis. With either estimator, it appears

that a fairly large sample size is required in order for the FML estimator to provide a

reasonable estimate of variance.

C.4.3. Bias of nuisance parameter estimators

The performance of the FML variance estimators depends on how well estimates of the

nuisance parameters are recovered. Figure C.15 displays the average bias of the nuisance

parameter estimates of σ2 and ρ versus the corresponding true parameter values, based

on continuous recording data (results for momentary time sampling data are similar). In

Figure C.15a, the 1st-order FML estimator of σ2 has on average an upward bias that

appears to be due to the approximation, because it persists as sample size increases.

The 2nd-order FML estimator of has a negative bias for larger values of σ2; the RML

estimators of σ2 have large, positive bias and are not displayed. Figure C.15b displays

the bias of the FML and RML estimators of ρ. The 1st- and 2nd-order approximations

perform very similarly. Both the FML and RML estimators have downward biases that

are reduced as sample size increases. The bias of the RML estimators are smaller and more

proportionate to the true parameter. Judging by the biases of the nuisance parameter



370

1st order 2nd order

−0.4

−0.2

0.0

0.2

10 15 20 10 15 20
n

B
ia

s(
σ2̂ )

σ2

0.125

0.25

0.5

1

(a) FML estimators of latent variability σ2

1st order 2nd order

−0.8

−0.6

−0.4

−0.2

0.0

−0.8

−0.6

−0.4

−0.2

0.0

F
M

L
R

M
L

10 15 20 10 15 20
n

B
ia

s(
ρ̂)

ρ

0.2

0.5

0.8

(b) 1st order FML and RML estimators of latent autocorrelation ρ

Figure C.15. Average bias of the nuisance parameter estimates, based on
serial dependence model for continuous recording data.

estimators even at large sample sizes, more accurate approximations to the covariance

matrix could be useful in improving the performance of the FML estimators.
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Table C.4. Simulation design for incidence dependence model

Parameter Definition # Levels Levels

πE Expected incidence 4 5, 10, 20, 40
φ Prevalence 2 0.1, 0.3
σ2 Latent variability 4 0.125, 0.250, 0.500, 1.000
ρ Latent auto-correlation 3 0.2, 0.5, 0.8
n Series length 4 8, 12, 16, 24

- Estimating equation 2 FML, RML

C.5. Incidence dependence models

This section describes a set of simulations involving models in which the latent values

of incidence are serially dependent from session to session, and where estimators are based

on event counting data. The design of this simulation runs parallel to that reported in

Section C.4.

I assume that the marginal distribution of the reported data is stable, so that β =

ln
[
E
(
Y E
j

)]
= ln

(
πE
)
. I assume that prevalence is constant from session to session and

that dependence between sessions arises due to serial correlation in values of incidence,

using the follow data generating model:

(
Y E
j |νj

)
∼ME (ARP [φj, ζj])

ln (ζj) = β − 1

2
σ2 + νj, νj ∼ N

(
0, σ2

)
φj = φ

where ν1, ..., νn follow an AR(1) serial dependence model with auto-correlation ρ. For the

event duration and interim time distributions, I use an alternating Poisson process model

in which both FD and FE are exponential.
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Table C.4 summarizes the design of the simulation. For each combination of factor

levels, I simulate 40,000 series and calculate the following statistics. First, I calculate the

marginal estimator β̂I and model-based variance estimator VR, both under the assump-

tion that repeated measures are independent; note that under the assumed stable phase

model, β̂I is simply the log of the mean. Second, I calculate the theoretically optimal

linear estimator β̂opt = ln
[
1′Σ−1

E YE/
(
1′Σ−1

E 1
)]

, with ΣE calculated using the empirical

distribution of the 40,000 simulated series. Third, for a subset of 1,000 simulations, I cal-

culate several different estimators for the variance of β̂I . I compute nuisance parameter

estimates using both the full Gaussian pseudo-likelihood estimating equation (6.20), de-

noted as FML, and the restricted version (6.23), denoted as RML, then evaluate V
(
β̂I

)
as given in (6.21).

C.5.1. Bias and efficiency of log-incidence estimators

Figure C.16 plots the average bias of the log-incidence estimators versus sample size n,

for varying levels of latent variability and auto-correlation; the average is taken across

levels of πE and φ because the bias does not depend strongly on either. The bias of

the independence estimator is nearly identical to that of the theoretically optimal linear

estimator; only when the latent process is highly autocorrelated does the optimal estimator

have reduced bias, and even then the improvement is slight. The bias of both estimators

depends strongly on the level of latent variability, with higher variability leading to larger

downward bias. The bias depends to a lesser extent on the level of latent autocorrelation,

with higher autocorrelation leading to larger downward bias. In combination, the effect

of a highly variable and highly dependent latent process produces large downward biases
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Figure C.16. Average bias of the independence estimator β̂I and the optimal
estimator β̂opt based on serial dependence model for event-counting data.

in both estimators, even for the largest sample size considered. Considering that these

biases are present even in the optimal linear estimator, other classes of estimators or

second-order bias corrections will need to be considered if these biases are to be reduced.

To understand the efficiency of the independence estimator, I compared its root mean-

squared error to that of the theoretically optimal linear estimator. I calculate relative ef-

ficiency as
√

E[(β̂opt − β)2]/E[(β̂I − β)2]. Figure C.17 plots the average relative efficiency

of the independence estimator versus sample size, for varying levels of latent variability

and auto-correlation. The degree of latent autocorrelation is the main factor determining
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Figure C.17. Average relative efficiency of β̂I versus β̂opt based on event
counting data in the stable-phase model, for varying values of latent vari-
ability σ2 and latent auto-correlation ρ.

relative efficiency. Except for highly autocorrelated processes, the independence estimator

is nearly as efficient as the optimal linear estimator, with average relative efficiency of over

97% even for ρ = 0.5. The relative efficiency is not strongly affected by latent variability,

though this may be largely a consequence of the bias of both estimators at high levels

of σ2. Based on these results, it appears reasonable to use β̂I as a point estimate rather

than one where the weight matrix is based on estimated nuisance parameters. I therefore

study the performance of variance estimators for β̂I rather than for an estimator involving

iterative evaluation of estimating equations, which substantially reduces computational

intensity.
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C.5.2. Bias and efficiency of variance estimators

Figure C.18 compares the average relative bias of the FML variance estimator V
(
β̂I

)
to the naive variance estimator, the latter of which does not account for possible serial

dependence; the average is taken across levels of πE and φ. The relative bias of the RML

variance estimator is not displayed because it is orders of magnitude larger than that of

the FML estimator. As is to be expected, the naive estimator underestimates the true

variance of β̂I to an extent that depends on both σ2 and ρ. The naive estimator remains

biased even as sample size increases. The FML estimator also tends to under-estimate the

true variance to an extent that depends on σ2 and ρ, but the bias decreases as sample size

increases. For series of length n = 24, the variance estimator is close to unbiased except

when the latent autocorrelation is very large. In general, it appears that a fairly large

sample size is required in order for the FML estimator to provide a reasonable estimate

of variance.

C.5.3. Bias of nuisance parameter estimators

The performance of the FML variance estimator depends in turn on how well estimates

of the nuisance parameters are recovered. Figure C.19 displays the average bias of the

nuisance parameter estimates of σ2 and ρ versus the corresponding true parameter values.

It can be seen in Figure C.19a that the FML estimator of σ2 has a downward bias that

is approximately proportional to the true parameter; the proportionate bias decreases

with sample size. This is consistent with the behavior of Gaussian maximum likelihood

estimators in other contexts. The RML estimator of σ2 has a large positive bias and

is not displayed. Figure C.19b displays the bias of the FML and RML estimators of
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Figure C.18. Average relative bias of the FML variance estimator and
the naive variance estimator, based on serial dependence model for event-
counting data.

ρ. Both estimators have downward biases that are reduced as sample size increases.

Curiously, the bias of the RML estimator is smaller and more proportionate to the true

parameter. In combination, the biases of the FML estimators for σ2 and ρ imply that the

off-diagonals of the covariance matrix of YE tend to be under-estimated, leading in turn

to underestimation of Var
(
β̂I

)
.
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