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Chapter 1: Operational comparability and single-case research 

Single-case designs comprise a set of research methods for evaluating the effects of 

interventions on individuals. The defining features of the designs are 1) controlled introduction 

(and possibly also removal) of an intervention on one or more individual cases, 2) repeated 

measurement of outcomes over time, and 3) use of each case as its own control. Empirical 

single-case research appears in many areas of psychology and education, but is particularly 

concentrated in Special Education, School Psychology, Clinical Psychology,  Psychotherapy, 

Social Work, and Applied Behavior Analysis (Horner et al., 2005; Kazdin, 2011; Kennedy, 

2004). By nature of the research designs and how study results are usually analyzed, single-case 

research emphasizes individual change. Single-case designs identify individual treatment effects 

through comparison of outcomes measured on the same individual at different points in time. 

Studies often report separate results for each case, with little emphasis on overall averages across 

cases. Thus, while study designs may be highly relevant to individual participants, each study 

provides meager evidence for drawing generalized inferences. 

Despite this idiographic orientation, there has long been interest in using meta-analytic 

synthesis techniques with single-case research, as a means to bolster the validity of single studies 

through replication, to study variation in treatment effectiveness across cases, and to generalize 

from a collection of studies (Allison & Gorman, 1993; Gingerich, 1984; Gorsuch, 1983). More 

recently, fields that use single-case research have begun to articulate standards of scientific 

evidence and have looked to quantitative synthesis as a means for establishing evidence-based 



practices (Chambless & Ollendick, 2001; Horner et al., 2005; Kratochwill & Stoiber, 2002; 

Odom et al., 2005). As a result, systematic reviews of single-case research now appear with 

increasing frequency (Maggin, O’Keeffe, & Johnson, 2011) and large research synthesis projects 

such as the What Works Clearinghouse (WWC) have recently broadened the scope of their 

evidence standards to include single-case research (Kratochwill et al., 2012).  

Despite long-standing interest among single-case researchers and increased attention 

from the evidence-based practice movement, there remains little consensus regarding how 

single-case studies should be synthesized. Even the most basic question of what effect size 

metric to use for meta-analysis remains unresolved, though proposals have proliferated (Beretvas 

& Chung, 2008; Wolery, Busick, Reichow, & Barton, 2010). Nearly all are subject to serious 

conceptual or technical criticisms (Shadish, Rindskopf, & Hedges, 2008), a situation that led the 

authors of the WWC pilot standards to refrain from recommending any specific effect size 

metrics or particular statistical approaches to analysis of single-case data. Many of the criticisms 

of previous approaches to statistical analysis and effect size estimation stem from two features of 

single-case data: first, that single-case data series often display time trends; and second, that 

repeated measurements of the same case should be treated as serially dependent, rather than 

independent. Recent discussions of effect sizes for single-case research have emphasized the 

importance of accounting for both of these features (Horner, Swaminathan, Sugai, & 

Smolkowski, 2012; Wolery et al., 2010). 

This dissertation addresses two challenges to defining and estimating effect sizes for 

single-case research. The first challenge is to find effect sizes that remain on a comparable metric 

across studies that use different research designs, such as single-case designs and simple 

randomized experiments; I call such effect sizes design-comparable. The second problem is to 



find effect sizes that can be applied across studies that use varied operational procedures for 

measuring the same construct; I call such effect sizes measurement-comparable. Abstractly, both 

of these problems are special cases of operational comparability—whether effect sizes are on a 

metric that is invariant across heterogeneous study operations. As I review in Section 1.1, 

questions of operational comparability arise in many different areas of meta-analysis. 

Operational comparability is essential in that it allows the meta-analyst to control for incidental 

characteristics related to study procedures and to focus instead on variation that is of scientific 

interest. Without it, a collection of effect sizes will exhibit heterogeneity due merely to 

procedural differences in how the study was carried out, making it more difficult to detect any 

substantive differences.  

To address these problems of design-comparability and measurement-comparability, my 

broad strategy is to formulate structural models that capture essential features of multiple 

relevant operations (either design-related features or measurement-related features). I then use 

these structural models to precisely define target effect size parameters, study identification 

issues, and propose estimation strategies. Chapters 2 through 4 study design-comparability: 

Chapter 2 describes an abstract set of modeling criteria for constructing design-comparable effect 

sizes; Chapters 3 applies these general criteria to the family of standardized mean difference 

effect sizes, proposing a design-comparable effect size and estimation method; and Chapter 4 

presents several applications of the proposed models and methods. Turning to measurement-

comparability, Chapter 5 proposes a measurement-comparability model and defines effect size 

measures for use with the most common classes of outcomes in single-case research. Chapter 6 

extends the proposed measurement-comparability model to incorporate more complex features, 



including time trends and serial dependence. Chapter 7 collects various further extensions, areas 

for further research, and concluding thoughts. 

Chapter 2: A general framework for design-comparability models 

Design-comparable effect sizes are needed in order to combine evidence from a 

collection of studies that used heterogeneous designs, such as single-case designs and between-

groups designs. Such evidence exists in a number of different research areas, including reading 

fluency interventions, writing interventions, and phonological awareness training programs. Past 

syntheses on these topics have either reported separate meta-analyses for each type of design or 

have limited their scope to only one type of design.  

A design-comparable effect size for single-case designs was first proposed by Hedges, 

Pustejovsky, and Shadish (2012, 2013, henceforth HPS), who used a particular hierarchical 

linear model to define a standardized mean difference effect size and explicitly demonstrate its 

equivalence to the standardized mean difference from a between-subjects randomized 

experiment. However, the HPS method is limited to a single model that makes strong 

assumptions regarding lack of time trends and homogeneity of treatment effects across cases. 

Though reliance on these strong assumptions limits the set of studies where the specific effect 

sizes described by HPS can be applied, the general approach has much broader application.  

In this chapter, I explicate the general logic behind the HPS approach and demonstrate 

how design-comparable effect sizes can be defined under much more general conditions. 

Specifically, I outline a set of three criteria that a model must meet in order for a design-

comparable effect size to be defined; I then describe how to use a model that meets those criteria 

to construct design-comparable effect sizes. The development in this chapter is abstract, rather 



than tied to any particular parametric model. Subsequent chapters apply the general logic to 

specific models and provide detailed applications. 

In order for a design-comparable effect size to be defined, it must be sufficiently general 

that it can describe both a single-case design and a cross-sectional randomized experiment. A 

sufficiently general model meets the following three criteria. First, it must adequately describe 

the observed data from the SCD under analysis, including capturing the functional form of the 

outcome process. This is because treatment effects are identified by extrapolating baseline trends 

forward in time (Horner et al., 2012), and a model should provide a reasonable fit to the observed 

baseline data if it is to be the basis for extrapolation. The second criteria is that the model must 

describe a population broad enough that one could conceivably perform an experiment on it, and 

must capture variation between the units of treatment assignment. This criterion ensures that the 

model is general enough to encompass a randomized experiment. The third criteria is that the 

model must be causally interpretable at the level of treatment assignment. I examine the third 

criteria in relation to three of the most common types of SCDs: the multiple baseline design, the 

treatment reversal design, and the alternating treatment design. For each design, I detail the set of 

potential outcomes encompassed by a causally interpretable model and examine how the most 

general models can be constrained by introducing structural assumptions.  

A model meeting these three criteria allows one to construct a design-comparable effect 

size parameter by considering a hypothetical, cross-sectional experiment where treatment 

assignment begins at a fixed point in time, a fixed schedule of treatment follows, and outcomes 

are measured at a fixed, later point in time. The effect size represents a contrast between the two 

potential outcome distributions identified in such an experiment. Thus, it depends may depend 

on an implementation time and a target follow-up time, both specified explicitly. 



Chapter 3: Design-comparable standardized mean differences: Modeling and estimation

 In this chapter, I apply the abstract modeling criteria outlined in Chapter 2 to define 

design-comparable effect sizes in the family of standardized mean differences. I propose a suite 

of multi-level models for the multiple baseline design and the treatment reversal design, thereby 

extending the HPS approach to incorporate time trends, heterogeneous treatment effects, and 

non-linear treatment response functions. I demonstrate how design-comparable effect sizes can 

be identified under these models, then describe an estimation method based on restricted 

maximum likelihood estimation with a further small-sample correction. Finally, I present several 

simulations examining the operating characteristics of the proposed estimators. 

For multiple baseline designs, all of the models that I consider are based on a common 

specification for the repeated measurements on a given case, involving piece-wise linear time 

trends in the baseline and treatment phases and auto-regressive dependence in the errors. Given 

this within-case specification, I describe five models that differ in which of the within-case 

parameters are allowed to vary across cases. The models are selected to highlight those that 

would be interesting and useful in application to single-case research. For each model, I 

demonstrate how to derive a design-comparable standardized mean difference parameter. 

 Compared to models for multiple baseline designs, causally interpretable models for 

treatment reversal designs are more difficult to formulate, because they must allow for treatments 

to be removed and re-introduced. I consider several models with non-linear treatment response 

functions, in which the treatment effect does not reach full potency immediately and decays only 

gradually after the treatment is removed; with this within-case model, the equilibrium treatment 

effect is then either assumed to be constant or to vary across cases. For each of these models, I 

again demonstrate how to derive a design-comparable standardized mean difference parameter. 



 Having presented a variety of models for single case designs and demonstrated how to 

use those models to construct a target effect size parameter, I then propose an estimation method. 

Based on restricted maximum likelihood (REML) estimates of a model’s component parameters, 

an initial effect size estimate is formed as the ratio of a linear combination of estimated fixed 

effects to the square root of a linear combination of estimated variance components. For some 

models, the exact form of these linear combinations depends on the specific times chosen for 

treatment introduction and follow-up. The initial effect size estimate is then corrected for small-

sample bias by approximating its distribution using a t-distribution, in a fashion similar to 

Hedges’ g-correction (Hedges, 1981); I will refer to the result as the c-REML estimator. The 

degrees of freedom in the t-approximation depend on the covariance matrix of variance 

component estimates, which I estimate via the inverse of the expected Fisher-information matrix. 

An estimator for the variance of the effect size is also based on a t-approximation.   

I conducted several small simulation studies examining the operating characteristics of 

the c-REML estimator under varying designs and data-generating models. The first simulation 

used the same basic data-generating models studied in earlier work by HPS, so that the c-REML 

estimator could be compared directly to the HPS effect size estimator. I find that the c-REML 

estimator has only small biases, even at the smallest sample sizes considered. Furthermore, it 

performs comparably to the HPS method in terms of bias and mean-squared error, and so may be 

considered a viable alternative. The proposed variance estimator also has smaller bias than the 

corresponding variance estimator proposed by HPS.  

Two further simulations examined the performance of the c-REML estimator under 

models with multiple between-case random effects. With a treatment reversal design and a data-

generating model involving heterogeneous treatment effects, I find that the c-REML estimator 



has reasonably small biases in datasets with five independent cases and has only moderate biases  

in datasets containing only three independent cases; the corresponding variance estimator is 

conservative in that it tends to over-state the estimator’s true variance. With a multiple baseline 

design and a data-generating model that allows time trends that vary across cases, the c-REML 

estimator has reasonably small biases in datasets with five independent cases; however, the 

corresponding variance estimator tends towards anti-conservatism, likely as a result of the larger 

number of fixed effect coefficients in the model. Future work should consider penalized 

likelihood methods (Chung, Rabe-Hesketh, Gelman, Liu, & Dorie, 2013) or small-sample 

corrections to fixed-effect standard errors (Kenward & Roger, 1997, 2009), which may yield 

better effect size estimates and variance estimates in models with multiple random effects. 

Chapter 4: Design-comparable standardized mean differences: Applications 

This chapter presents five detailed applications of the models and estimation methods 

described in Chapter 3, illustrating the process of model fitting and comparison. The applications 

are drawn from real single-case studies. Several of the examples were also analyzed by HPS, 

allowing me to highlight distinctions between the proposed c-RML estimator and the estimation 

methods proposed by HPS. The comparisons demonstrate some minor deficiencies in the HPS 

method for estimating nuisance parameters. More broadly, the chapter demonstrates the 

flexibility and extensibility of the c-REML estimator for a wide array of different models. 

Chapter 5: Measurement-comparable effect sizes for free-operant behavior 

A desirable characteristic of an effect size measure is that its magnitude should not 

depend strongly on operational details of how the outcome was measured. Without this property 

of measurement comparability, it becomes difficult to draw meaningful inferences from averages 

across and comparisons between effect sizes because true variation in magnitude is confounded 



by differences in measurement scales. Despite its importance, measurement comparability has 

received scant attention in discussions of effect sizes for single-case research. The measurement 

comparability of some commonly used effect sizes has been asserted based on heuristic 

arguments (Parker, Vannest, & Davis, 2011; Van den Noortgate & Onghena, 2003), but never 

examined with explicit statistical models.  

This chapter develops effect size measures for single-case research that attend closely to 

the issue of measurement comparability. Setting aside issues of design-comparability, I focus on 

effect sizes for quantifying changes in the behavior of individual cases, rather than average 

changes in a population of cases. Also, rather than attempting to encompass any and all 

measurement operations used in single-case research, I focus only on the most common class of 

outcome measures: direct observation of behavior in free-operant contexts.  

Free-operant contexts are defined by a setting or time-frame in which behaviors are free 

to occur at any time, without prompting or restriction by the investigator. When conducting 

direct observation in this context, several different procedures might be used to generate a 

quantitative summary measurement of the behavior; the most commonly used procedures are 

continuous recording, event counting, momentary time sampling, and interval recording. In 

practice, these procedures may be applied to measure very similar constructs, such as problem 

behavior. Measurement-comparable effect sizes are therefore needed in order to synthesize a set 

of studies that use such heterogeneous measurement procedures. 

To define and study measurement-comparable effect sizes for free-operant behavior, I 

posit an equilibrium alternating renewal process (ARP) model for the behavior that is observed 

on a given measurement occasion, or what is sometimes called the “behavior stream.” Two 

characteristics of the behavior stream correspond directly to parameters of the ARP: prevalence, 



or the proportion of time that the behavior occurs, and incidence, or the rate at which new 

behavioral events occur. Given the assumptions of the ARP, several of the recording procedures 

produce measurements that correspond directly to either prevalence (continuous recording, 

momentary time sampling) or incidence (event counting). However, interval recording 

procedures are problematic because they produce measurements that are a complex function of 

both prevalence and incidence.  

After describing the ARP model for the measurement process within a single session, I 

outline a simple model for the data collected on a single case over the course of multiple 

observation sessions, both before and after the introduction of a treatment. The model posits that 

subsequent measurements are independent and that the behavior follows a stable ARP within 

each phase; only the parameters of the ARP change from phase to phase.  

Using both the within-session ARP model and the simple between-session model, I 

define several effect size parameters for measuring change in distinct aspects of the behavior 

stream, including the log-incidence ratio, the log-prevalence ratio, and the log-prevalence odds 

ratio. I then delineate the conditions under which these different metrics are equivalent, so that 

different effect sizes may be treated as either exactly or approximately measurement-comparable.  

Having defined several effect size metrics for measuring change in directly observed 

behavior, I turn to questions of estimation. For measurements that correspond directly to 

behavioral parameters, some of the proposed effect sizes can be viewed as special cases of the 

log-response ratio, a well-known effect sizes used for meta-analysis in ecology and other 

disciplines (Hedges, Gurevitch, & Curtis, 1999) that is typically estimated by a basic moment 

estimator. Due to the small sample sizes available in many single-case studies, I instead propose 

estimators derived from a second-degree Taylor series approximation. Based on simulation 



studies reported in Appendix C.1, the bias-corrected estimators are preferred because they are 

nearly unbiased, even in quite small samples, and have mean-squared error that is comparable to 

the conventional moment estimators. 

Next, I propose several approaches for estimating effect sizes from interval recording 

data, which measure directly neither the prevalence nor the incidence of the behavior. To deal 

with this construct invalidity, I introduce several distinct sets of further assumptions, each of 

which lead to bounds for a target effect size that can estimated from interval recording data. 

These approaches all differ in the assumptions on which they rely and in the information they 

yield, and thus will be appropriate in quite distinct empirical contexts. 

In the final section of the chapter, I demonstrate the use of the proposed effect sizes for 

meta-analyzing a collection of single-case studies. The studies are drawn from a systematic 

review examining the effect of choice-making opportunities on the problem behavior of children 

with disabilities (Shogren, Faggella-Luby, Bae, & Wehmeyer, 2004). For each of the 27 cases in 

the synthesis, the outcome was a measure of problem behavior; however, a variety of different 

procedures were used to record the data. Measurement-comparable effect sizes provide a 

common metric for synthesizing the results across all of the cases, and have the advantage of 

being interpretable in terms of clear behavioral constructs. The results of the meta-analysis are 

quite sensitive to the assumptions employed to address the construct invalidity of interval 

recording data, due to the large number of cases measured using this method. 

Chapter 6: Generalized linear models for free-operant behavior 

The effect size model in Chapter 5 assumed that the behavior stream process is stable, 

leading to reported data that are independent and identically distributed within each treatment 

condition.  In this chapter, I consider models that relax the stability assumption in two ways: by 



allowing for deterministic time trends and by allowing for stochastic, possibly serially correlated 

variation in the prevalence and incidence of the behavior stream. I focus on the types of reported 

data that are direct measures of incidence or prevalence; applications to interval recording 

methods remain a topic for future work.  

The central challenges in extending the model stem from a lack of tractable probability 

distributions that are also plausible for measures of directly observed behavior. Under the posited 

ARP, the first moments of such measurements depend only on the first moments of the event 

durations and interim times that constitute the latent behavior stream. However, full probability 

distributions for the recorded data will depend on further moments of the event duration and 

interim time distributions, about which little will be known. Moreover, even if parametric 

distributions for event durations and interim times could be specified, the resulting probability 

distributions for session-level summary data would be intractable.  

Absent plausible distributional models for the data-generating processes under study, I 

turn to quasi-likelihood methods. Quasi-likelihood estimating equations provide a natural and 

judicious approach to estimation, in that they require assumptions only regarding the mean and 

variance of the outcome, rather than its full parametric form. However, quasi-likelihood methods 

also carry the caveat that they provide asymptotic consistency, rather than exact, small-sample 

results. Given that applied single-case researchers and meta-analysts must deal with limited 

available data, I rely on small-sample simulation results to make assessments regarding the 

performance of the estimation techniques that I propose in this chapter. 

I first consider generalized linear models that include time trends. For data from a given 

measurement procedure, I assume that the mean of the outcome relates to a linear predictor via a 

natural link function. The linear predictor contains a baseline time trend, an initial treatment 



effect, and a treatment-by-trend interaction term. In this model, a case-specific effect size is 

defined for a fixed, clinically meaningful duration of treatment, which can be expressed as a 

linear combination of the initial treatment effect and the treatment-by-trend interaction. To 

complete the model specification, I assume that the variance of the outcome can be expressed as 

the product of a set of dispersion parameters and a known variance-mean relationship. The 

dispersion parameters are allowed to vary between the baseline and treatment phases.  

To estimate the target effect size, I use inter-linked quasi-score equations for the 

parameters in the linear predictor and the dispersion parameters (McCullagh & Nelder, 1989, 

Chapter 10). Because the quasi-score function for the linear predictor is an unbiased estimating 

equation, it yields an asymptotically consistent estimator under fairly general regularity 

conditions, regardless of whether the variance function is correctly specified. Exact variance 

functions corresponding to the ARP model are not typically available, even given specific 

parametric forms for the event duration and interim time distributions. Instead, I suggest variance 

functions for each of the measurement procedures under consideration, which capture the gross 

features of the mean-variance relationship but may still involve some degree of mis-

specification. For example, I recommend the use of the Wedderburn variance function for 

continuous recording data because it approximates the exact variance when the event duration 

and interim time distributions are both exponential. I then consider alternative approaches to 

estimating the variance of the effect size. In a series of small simulations, I find that model-based 

estimators have substantially lower mean-squared error than empirical sandwich estimators, 

despite using a variance function that is not exact. 

I then describe an extension to this generalized linear model that also incorporates serial 

dependence between measurements from successive observation sessions. I assume that the 



serial dependence arises from change in the latent parameters of the behavior stream over time 

rather than from dependence in the measurement process itself. The introduction of variability in 

the parameters of the behavior stream process leads to a technical distinction between the 

conditional mean of the process and the marginal mean of the outcome; a between-session model 

for change in the behavior stream process—and thus an effect size—could conceivably be 

specified in terms of either. I follow the latter route, positing a generalized linear model for the 

marginal mean of the outcome, which implies a unique though possibly non-linear model for the 

conditional mean (cf. Heagerty & Zeger, 2000). Just as in the simpler models described earlier, 

case-specific effect sizes can then be expressed as linear combinations of parameters in the mean 

specification.  

To estimate effect sizes under this model, I study two types of linear, unbiased estimating 

equations. The simpler approach ignores the serial dependence structure in the data, and is 

equivalent to quasi-likelihood estimation assuming independent measurements. I show that the 

approach of ignoring serial dependence is often nearly as efficient as an estimator based on a 

known serial dependence structure. An alternate approach is to estimate the serial dependence 

structure and using the results to estimate the mean structure more efficiently. In either case, an 

estimate of the dependence structure is needed in order to estimate the variance of the effect size.  

I study Gaussian pseudo-likelihood estimating equations (Hall & Severini, 1998; Wang & 

Carey, 2004) for estimating the parameters of the dependence structure. I simulate data for each 

type of direct measurement procedure, based on a very simple model for the mean structure. For 

event counting data, modeled using a log-link function, I find that fairly long series (24 

observations or more) are needed in order for the variance estimator to be approximately 

unbiased. Even longer series are needed for continuous recording and momentary time sampling 



data, modeled using a logit-link function, due to the use of approximations rather than exact 

expressions for the covariance of the data. In summary, the estimation approach that I have 

examined may require larger sample sizes for adequate performance than are typically available 

from single-case time series. Future work will explore several approaches to address this 

shortcoming.  

Chapter 7: Future directions 

In this chapter, I briefly discuss several further projects that I plan to pursue. Some of 

these future directions lead beyond the domain of single-case research, while others target 

common research practices in single-case research but are not immediately connected to meta-

analysis. First, I sketch a method for estimating standardized mean difference effect sizes in from 

longitudinal data, including not just single case designs but other types of interrupted time series; 

the method is designed to be robust to mis-specification of the serial dependence structure for the 

repeated measurements. Second, I use the ARP model described in Chapter 5 to illustrate 

construct validity threats that can arise from the use of interval recording methods for direct 

observation. On a related third topic, I summarize in-progress work aimed at developing new 

methods of analyzing interval recording data that may remedy the construct validity 

shortcomings; the method makes use of finer-grained data from within an observation session, 

rather than just summarized, session-level data. Fourth, having argued for the importance of 

operational comparability and proposed new effect sizes for single-case research that are 

demonstrably design-comparable or measurement-comparable, I make some observations about 

the properties of several prominent effect sizes in the literature.  


