Observation procedures and Markov Chain models for estimating the prevalence and incidence of a state behavior

James E. Pustejovsky and Daniel M. Swan The University of Texas at Austin


Austin H. Johnson University of Connecticut

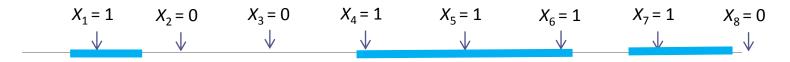
April 16, 2015

Slides at http://bit.ly/1NQIFEY

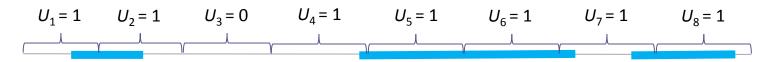
Direct observation of a state behavior

- Applications in education research
 - Assessment of student attention/disruptive behavior
 - Early childhood development
 - Single-case research for evaluating interventions for individuals with developmental disabilities
- State behavior: a behavior where individual episodes have positive duration.
 - Prevalence: proportion of time that the behavior occurs
 - Incidence: rate at which new episodes of behavior begin

The behavior stream


How to record data during direct observation of a behavior?

Observation recording procedures


- Continuous recording
 - Produce rich data, amenable to sophisticated modeling
 - Effort-intensive
- Discontinuous recording procedures
 - Momentary Time Sampling (MTS)
 - Partial Interval Recording (PIR)
 - Whole Interval Recording (WIR)

Discontinuous recording procedures

- Divide an observation session into many short intervals of equal length.
- Record a **binary score** for each interval.
- MTS: score 1 if behavior is occurring at the end of the interval.

• PIR: score 1 if behavior occurs at any point during the interval.

• WIR: score 1 if behavior occurs for the entire interval.

$$W_1 = 0$$
 $W_2 = 0$ $W_3 = 0$ $W_4 = 0$ $W_5 = 1$ $W_6 = 1$ $W_7 = 0$ $W_8 = 0$

Estimation: Momentary time sampling

- MTS summary proportion is unbiased estimate of prevalence.
 - But how to estimate incidence?
 - But how to estimate standard error of measurement?
- Brown, Solomon, & Stephens (1977)
 - Show that if the behavior stream follows an Alternating Poisson Process, then MTS data follow a simple, two-state Markov Chain.
 - Provide maximum likelihood estimators for prevalence and incidence.

Estimation: Partial/whole interval recording

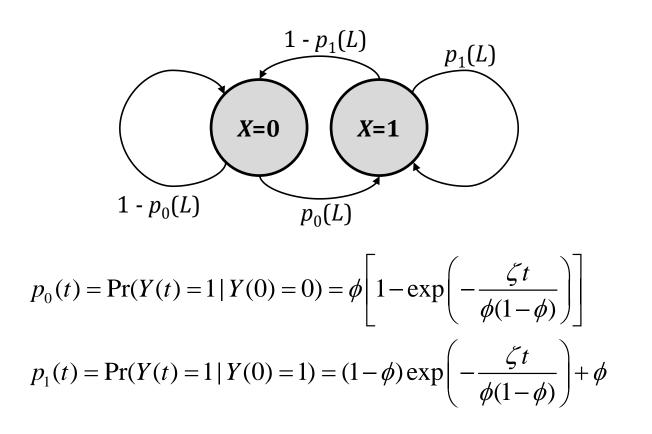
- PIR and WIR summary proportions are **biased** estimates of prevalence.
 - Bias depends on incidence and interval length (Kraemer, 1979; Pustejovsky, 2014).
- Alternating Poisson Process model
 - We derive expressions for the likelihood of PIR and WIR data assuming that the behavior stream follows an Alternating Poisson Process.
 - Maximum likelihood estimators, penalized maximum likelihood estimators for prevalence and incidence (using numerical optimization).
 - Prevalence PLE is much more accurate than summary proportion.
 - Relatively long sessions are needed to obtain low-bias estimates of prevalence and incidence.

A novel recording procedure: Augmented interval recording (AIR)

- Combine MTS, PIR, and WIR to obtain more efficient estimates.
- Fewer, longer intervals, with **two** binary scores per interval.
- Under the Alternating Poisson Process, AIR data follow an 4state discrete-time Markov Chain.
 - Maximum likelihood, penalized maximum likelihood estimators for prevalence and incidence (using numerical optimization)
- For a fixed session length (and double-length intervals), AIR is...
 - More efficient than PIR/WIR (both prevalence and incidence)
 - Slightly less efficient than MTS prevalence estimates
 - Much more efficient than MTS incidence estimates

Future work

- Further evaluation
 - Robustness to violations of Alternating Poisson Process assumptions
 - Feasibility/ease of using AIR in field settings
- Extending the measurement models
 - Regressions for multiple observation sessions
 - Random effects models to describe variation in prevalence and incidence across individuals
- Psychometrics (cf. Rogosa & Ghandour, 1991)
 - Use the models to develop guidance regarding use of the recording procedures, interval lengths, and session lengths.
 - Understanding structure of recording errors under each procedure

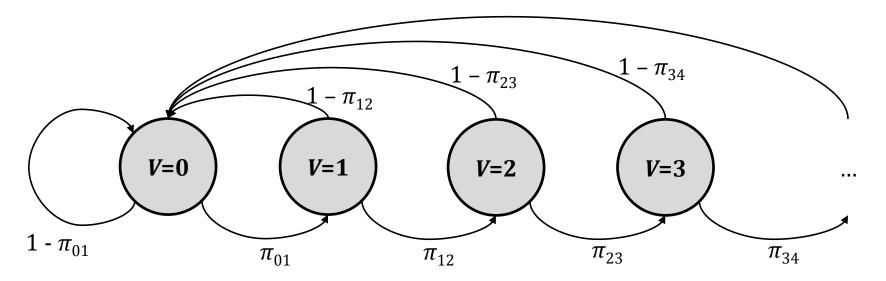

Thank you

James E. Pustejovsky The University of Texas at Austin Educational Psychology Department <u>pusto@austin.utexas.edu</u>

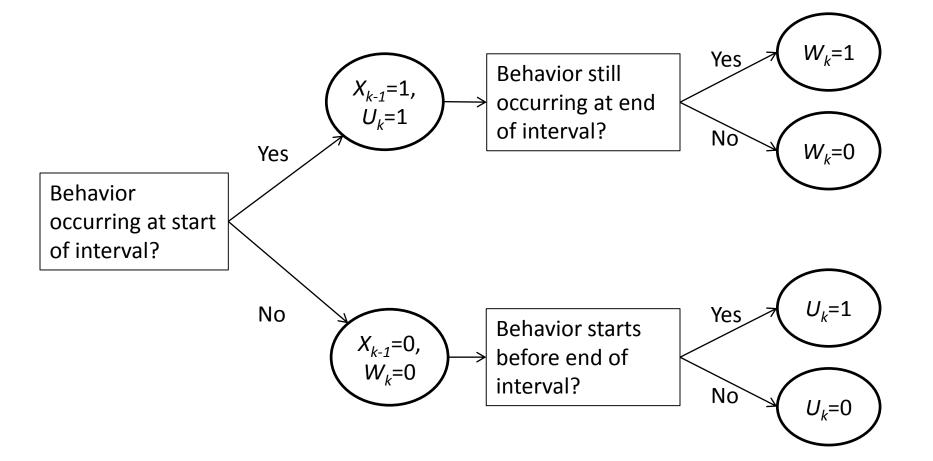
Model for MTS data

Under the alternating Poisson process, X₁,...,X_κ follow a discrete-time Markov chain (DTMC) with two states

(see e.g., Kulkarni, 2010).

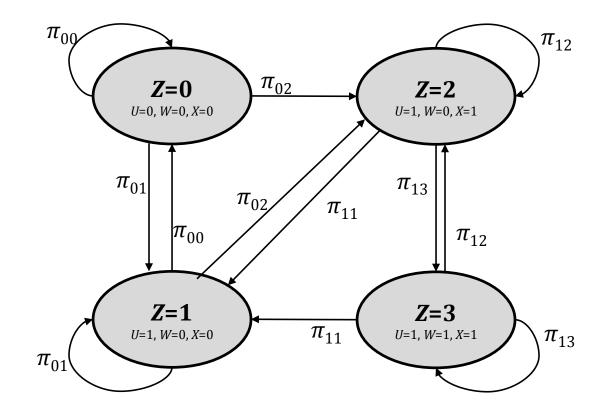


Model for PIR data


 Define V_k as the number of consecutive intervals where behavior is present:

$$V_k = k - \max\left\{0 \le j \le k : \mathbf{U}_j = 0\right\}.$$

Under the Alternating Poisson Process, V₁,...,V_K follow a DTMC on the space {0,1,2,3,...}.



Augmented interval recording (AIR)

Model for AIR data

- Define $Z_k = U_k + W_k + X_k$.
- Under the alternating Poisson process, $Z_1, ..., Z_{K/2}$ follow a DTMC on {0,1,2,3}, with transition probabilities π_{ab} = Pr(Z_k = $b \mid X_{k-1}$ = a)

