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Research Synthesis and Meta-Analysis of Single-Case Designs 

 

In some areas of special education, much of the research base consists of studies that use 

single-case designs (SCDs). Single-case research methods play a prominent role in clinical and 

applied intervention research—especially research on low-incidence disabilities—because SCDs 

can be conducted with relatively few participants, and in settings where other types of 

experimental designs are difficult or infeasible. For example, Wong and colleagues (2015) 

conducted a comprehensive review of focused intervention practices for children with autism. Of 

456 studies identified in the review, 89% used SCDs and only 11% used between-groups 

research designs. Similarly, a systematic review of positive behavioral interventions for children 

with challenging behavior identified 62 single-case studies but only 1 between-subjects design 

(Conroy, Dunlap, Clarke, & Alter, 2005). Use of SCDs appears to have become somewhat more 

common over the past three decades, as indicated by frequency of publication in prominent 

Special Education journals (Hammond & Gast, 2010) and growth in citations of “multiple 

baseline,” the most common type of SCD (Moeyaert, Ugille, Ferron, Beretvas, & Van den 

Noortgate, 2013).   

Given the size and breadth of the research base that makes use of the designs, as well as 

their prevalence in some research areas, there is a need for systematic reviews and syntheses of 

evidence from SCDs. Research synthesis is the process of integrating results from multiple 

empirical studies for purposes of drawing generalizations (Cooper, Hedges, & Valentine, 2009). 

Often, this integration of study results is conducted using the statistical techniques of meta-

analysis. By systematically comparing and combining evidence across individual studies, careful 

syntheses can be used to draw more generalized inferences than would be warranted either from 
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individual studies or from narrative literature reviews—particularly in areas where individual 

studies are small, heterogeneous, and potentially come to ambiguous or discrepant conclusions. 

In the context of special education, syntheses and meta-analyses of SCDs can be 

important research endeavors for at least three reasons. First, syntheses can serve as a basis for 

establishing evidence-based practices and directing clinicians, educators, and caregivers towards 

more effective interventions. Across many fields where between-groups research (e.g., 

randomized clinical trials) predominates, research syntheses are now recognized as a crucial tool 

for guiding policy and decision-making. A number of organizations exist to facilitate the 

production and use of syntheses for these aims, including the Institute of Education Science’s 

What Works Clearinghouse (WWC; http://ies.ed.gov/ncee/wwc/) in education, the Cochrane 

Collaboration (http://www.cochrane.org/) in health care, and the Campbell Collaboration 

(http://www.campbellcollaboration.org/) in social sciences, among others. Many such large-scale 

synthesis efforts initially ignored evidence from SCDs (Shadish & Rindskopf, 2007), with 

consequent limitations in the evidence base for areas such as early intervention and early 

childhood special education (Odom, Collet-Klingenberg, Rogers, & Hatton, 2010). However, 

over the past decade, several prominent research organizations have developed guidelines for 

establishing evidence-based practices on the basis of evidence from SCDs, including Divisions 

12 and 16 of the American Psychological Association (Chambless & Hollon, 1998; Chambless & 

Ollendick, 2001; Kratochwill & Stoiber, 2002), the Council for Exceptional Children's Division 

for Research (Council for Exceptional Children Working Group, 2014; Horner et al., 2005), and 

the WWC (Kratochwill et al., 2013). These guidelines have been applied to identify effective 

intervention practices for children with autism (e.g., Wong et al., 2015), as well as to 

http://ies.ed.gov/ncee/wwc/
http://www.cochrane.org/
http://www.campbellcollaboration.org/
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demonstrate a lack of supporting evidence for certain practices (e.g., Losinski, Sanders, & 

Wiseman, 2016). 

In addition to identifying evidence-based practices, syntheses of SCDs can be used to 

study variation in a treatment’s efficacy across sub-populations, settings, conditions, and 

procedures (Gingerich, 1984; D. M. White, Rusch, Kazdin, & Hartmann, 1989). For example, in 

a recent meta-analysis of SCDs on behavioral self-management interventions, Briesch and 

Briesch (2016) found that intervention effects were moderated by both student disability type 

and by use of specific intervention components. It would be difficult to establish such 

relationships without using meta-analysis because individual studies seldom contain sufficient 

variability across moderating characteristics, much less a sufficient number of cases to be able to 

distinguish systematic associations from chance.  

A final, less widely recognized advantage is that research syntheses can contribute to 

improvement and innovation in the methodology of a discipline. In clinical medicine, such 

investigations have identified puzzling and troubling patterns in empirical findings, such as that 

effect sizes from initial trials tend to be inflated compared to later trials (e.g., Ioannidis, 2008). 

More relevant to special education, scholars have used research synthesis methods to evaluate 

the methodological characteristics of published SCDs against existing standards and best-

practice recommendations (Shadish & Sullivan, 2011; Smith, 2012) and to examine the extent to 

which data from SCDs meet the assumptions required for conventional statistical analyses 

(Solomon, 2014). In projects such as these, using research synthesis provides a unique vantage 

point from which to assess the workings of an entire field. 

In light of these potential advantages, there has long been interest in applying research 

synthesis methods to SCDs (Allison, Faith, & Franklin, 1995; Gingerich, 1984; Scruggs, 
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Mastropieri, Cook, & Escobar, 1986). The production of systematic reviews and syntheses of 

single-case research has also increased considerably over the past decade (Maggin, O’Keeffe, & 

Johnson, 2011), likely spurred by the increasing emphasis on evidence-based practice. 

Simultaneously, methodological developments over the past decade have greatly expanded the 

range of statistical tools available for meta-analyzing SCDs (Shadish, 2014)—particularly in the 

areas of effect size metrics and meta-analysis methods. Although there is now a wide array of 

statistical techniques available, many of these tools are still under development and investigation, 

and there remains a lack of consensus about which tools are best suited for use with single-case 

data (Lane & Carter, 2012). As a result, a researcher interested in conducting a synthesis of 

single-case research is currently faced with what might seem to be a dizzying array of options 

and differences of methodological opinion.  

The goal of this chapter is to survey some of these developments and provide guidance 

about how to conduct a synthesis of SCDs. We begin by providing an overview of the process of 

conducting a research synthesis and discussing the tasks and procedures involved in the initial 

stages of a synthesis project. Because these initial stages closely resemble the processes used for 

synthesizing between-groups research, we provide only a brief overview. In subsequent sections, 

we discuss available effect size metrics for quantifying the magnitude of functional relationships 

between interventions and outcomes, then discuss methods for synthesizing results across 

multiple cases and SCD studies. These later sections are more detailed (though still selective) 

because the topics involves technical methods that are more specialized to single-case research. 

Unfortunately, there remain a number of outstanding methodological questions about these 

stages of the process, which prevents us from offering definitive recommendations about how to 

proceed on certain fronts. Given the lack of methodological consensus, we conclude by 
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highlighting areas in need of further research and suggesting some ways to proceed until the 

outstanding methodological issues are better resolved.     

The Research Synthesis Process 

 

The work involved in designing and conducting a research synthesis is in many respects 

analogous to the process of conducting a primary research study such as a survey, except that it 

involves sampling and collecting measurements from already-conducted studies (typically, as 

described in published or unpublished research reports) rather than from individual people 

(Cooper, 1982). The process begins by formulating research questions and making decisions 

about how to operationalize the constructs involved. Similar to how one would sample and 

screen participants for eligibility in a primary study, research synthesis involves systematically 

searching for and screening studies for inclusion. Then, rather than surveying or measuring 

participant characteristics, research synthesis involves coding the characteristics of identified 

studies and extracting data. Typically (though not always), extracted data are used to calculate 

effect sizes, which are indices that quantify the magnitude of the functional relationships 

observed in the study. In primary research, statistical analysis (e.g., analysis of variance, 

regression modeling, hypothesis testing) is used to draw and support inferential conclusions on 

the basis of sample data; in a research synthesis, inferential conclusions are often drawn using 

the techniques of meta-analysis, a specialized set of statistical tools for combining and analyzing 

information (in the form of effect sizes or raw data) from multiple studies. At every stage of the 

process, researchers aim to apply scientific methods by using systematic, clearly operationalized, 

and replicable procedures, with the goal of obtaining a comprehensive and unbiased view of the 

available evidence. 
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This section provides an overview of the initial steps involved in conducting a research 

synthesis. The issues and methods involved in these stages are mostly generic, and apply whether 

the synthesis focuses on single-case or between-groups research. We therefore keep the 

discussion brief, while highlighting areas of particular concern in syntheses of SCDs. 

Researchers planning to conduct a synthesis will find it helpful to also consult more detailed 

guides to the process. Cooper (2010) and Lipsey and Wilson (2001) provide book-length 

treatments focused on synthesis of social science research. The Handbook of Research Synthesis 

and Meta-Analysis (Cooper et al., 2009) is a comprehensive and authoritative source for learning 

about the methodological issues involved in research synthesis.   

Formulating and operationalizing research questions 

Synthesis projects begin by formulating a set of research questions that can be addressed 

by examining the results of studies that have already been conducted. Questions addressed 

through research synthesis vary in scope (Cooper, 2009), but syntheses of SCDs are often either 

intervention-focused or problem-focused. Intervention-focused syntheses pose questions about a 

particular class of interventions or practices and may examine effects across a range of different 

outcomes. For instance, Fowler, Konrad, and Walker (2007) examined the effects of self-

determination interventions on academic outcomes for students with cognitive disabilities. In 

contrast, problem-focused syntheses focus on a broader range of interventions or practices for 

addressing a specified problem. For example, Heyvaert and colleagues (2014) examined the 

efficacy of behavioral interventions—ranging from antecedent exercise to mindfulness-based 

interventions to differential reinforcement of alternative behavior—for reducing problem 

behavior in individuals with autism. Regardless of whether the research questions center around 

an intervention or around a problem, most syntheses of SCDs also limit scope to a certain 
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population of individuals (e.g., children with autism, students with emotional and behavioral 

disorders).  

Once formulated, the research questions to be addressed in a synthesis will invoke 

constructs pertaining to the population of individuals, types of interventions, and outcome 

variables of interest. To address the research questions, one must formulate for each dimension a 

set of criteria that define whether a given study falls within the scope of relevant evidence. For 

example, Heyvaert and colleagues (2014) specified detailed criteria for determining whether a 

study’s participants included individuals with autism and for determining whether the study 

assessed problem behavior as an outcome. Providing detailed operational definitions enables the 

research team to maintain objectivity when assessing studies for inclusion, as well as allowing 

the study’s audience to judge the extent to which the included studies are relevant to addressing 

the research questions.  

One further dimension that should also be addressed in developing inclusion criteria is 

the type of research design employed in a study. Syntheses of between-groups intervention 

research often limit consideration to research designs that are understood to have strong internal 

validity—that is, where it is reasonable to interpret the observed results as representing causal 

effects of the intervention on the outcome. Many syntheses of SCDs limit their scope only to 

studies that use SCDs (e.g., Heyvaert, et al., 2014), although others include both SCDs and well-

designed between-groups studies (e.g., Yoder, Bottema-Beutel, Woynaroski, Chandrasekhar, & 

Sandbank, 2014). In our opinion, the latter approach is usually preferable because it yields a 

more complete picture of the evidence. To the extent that both types of research designs can 

provide internally valid evidence about functional relationships (i.e., causal effects), then there is 

little reason to limit consideration to only SCDs, at least on an a priori basis.  
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Syntheses of SCDs also often limit consideration to studies published in peer-reviewed 

sources (e.g., Briesch & Briesch, 2016; Fowler et al., 2007). This strategy is in marked contrast 

to typical practice in syntheses of between-groups research, where searching for unpublished 

research is recognized as critical for obtaining a representative view of the evidence (Rothstein, 

Sutton, & Borenstein, 2005). The main justification for focusing on peer-reviewed SCD studies 

is that doing so ensures that studies meet some standard of rigor. However, peer-review is only 

an indirect indicator of study quality and might itself induce new biases and distortions in a body 

of evidence (Sham & Smith, 2014). We therefore recommend that synthesis projects not use 

peer-review status as an inclusion criterion, but instead examine both published and unpublished 

research (e.g., Losinski et al., 2016).   

Searching for and screening literature 

 Having formulated a set of research questions and articulated clear inclusion criteria, the 

next stage of the process is to search for and screen research reports for eligibility. The over-

arching goal of literature search is to identify as comprehensively as possible the set of studies 

that fit inclusion criteria. Of course, in the interest of feasibility it is also desirable to limit the 

amount of irrelevant material that must be screened out.  

White (2009) reviews five different modes of literature search that can be used to identify 

candidate studies: database searches, footnote chasing, consultation, browsing, and citation 

searches. These search modes commonly involve tasks such as:  

 keyword searches in reference databases like PsychInfo®, the Educational Resources 

Information Center, and PubMed; 

 examining the references of previous reviews on relevant topics; 

 asking scholars who are active in the field to provide information about completed studies; 
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 examining the table of contents of subject-area journals;  

 examining the references of studies already identified as meeting inclusion criteria; and  

 searching for articles that cite included studies.   

Research synthesis projects often use several—or even all—of these approaches to identify 

literature.  

Of the five modes, reference database search is often the first and biggest source of 

candidate studies. In constructing searches, it is crucial to understand the coverage of each 

database and to use multiple databases in order to improve coverage and reduce the potential for 

bias in the set of retrieved literature (Reed & Baxter, 2009). The Campbell Collaboration 

provides useful guidance about developing search strategies for systematic reviews in the social 

sciences (Kugley et al., 2016).   

 Once a set of candidate studies has been identified, they must be screened to determine 

whether they meet the specified inclusion criteria. This time-consuming task is typically carried 

out in multiple stages, starting with review of titles and abstracts to screen out clearly ineligible 

studies. Full-text review of potentially eligible studies is then used to make final eligibility 

decisions. Throughout the process, multiple reviewers should be used to ensure reliability, and 

reasons for exclusion should be documented.   

Extracting data and coding study characteristics 

 After identifying studies for inclusion in the synthesis, the next step is to extract results 

and code characteristics of the studies. The results of single-case studies are typically presented 

graphically in single-case diagrams. Raw data can be extracted reliably from these graphs 

(Moeyaert, Maggin, & Verkuilen, 2016; Shadish et al., 2009) and then used to calculate effect 

size indices or used for raw-data meta-analysis, as we describe in later sections. Study 
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characteristics to extract might include information about the research setting, participants, 

intervention approach, methodological procedures, or even the research team who conducted the 

study. This information serves two purposes. First, it is used descriptively to characterize the 

body of research that is being synthesized—much as a primary study would always report 

descriptive statistics on the demographic characteristics of participants. Second, coded study 

characteristics become moderators in a meta-analysis of study results, potentially explaining 

variation in the observed effect sizes.  

Wilson (2009) provides practical guidance on how to conduct systematic coding of 

studies, emphasizing the importance of developing a protocol. The process of coding single-case 

research is complicated by the hierarchical structure of the information to be encoded. Data to be 

extracted might describe study-level details, individual case characteristics (nested within the 

study), or session-level information (i.e., outcome measurements, phase in which the session 

falls, nested within cases). For dealing with information structured in hierarchical fashion, 

Wilson (2009) recommends using a relational database so as to avoid unnecessary repetition and 

ensure accuracy of data entry. 

Assessing evidence quality 

In any research synthesis, an important class of data to be extracted from identified 

studies is characteristics that relate to evidence quality—or more precisely, the extent to which a 

study provides internally valid evidence about the functional relationships of interest. 

Information about evidence quality is crucial because the validity of one’s ultimate conclusions 

rests on the validity of the evidence that is synthesized. Judgments about evidence quality in 

SCDs involve dimensions that are distinct from evidence quality in between-groups designs 

(Odom et al., 2005). Consequently, research syntheses of SCDs should use a quality appraisal 
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tool that is developed specifically for SCDs. Wendt and Miller (2012) identified and critically 

reviewed seven such tools, finding that they range in scope of application and rigor of their 

criteria. Two tools that have received considerable attention are the What Works Clearinghouse 

(WWC) Pilot Standards and the Council for Exceptional Children (CEC) Standards, both of 

which draw extensively on a conceptualization of evidence quality proposed by Horner and 

colleagues (Horner et al., 2005).    

   The WWC Pilot Standards (Kratochwill et al., 2013) were developed as inclusion criteria 

for meta-analyses conducted by the WWC. To satisfy the design standards without reservations, 

a study must meet the following criteria: 

 the intervention must be systematically manipulated by the researcher;  

 each outcome must be measured systematically over time by more than one assessor, with 

inter-assessor agreement exceeding a specified threshold; 

 the design must include at least three attempts to demonstrate an effect; and 

 phase designs (e.g., multiple-baseline, ABAB) must have a minimum of five data points per 

phase, while alternating treatment designs need at least five repetitions of the alternating 

sequence. 

Only SCDs meeting all of the design standards are included the synthesis of evidence.  

Wolery (2012) criticizes the WWC Pilot Standards for being overly influenced by 

concepts from between-groups research; for missing important dimensions of single-case 

research, such as evaluation of measurement procedures and assessment of procedural fidelity; 

and for not covering the full range of available single-case designs (e.g., adapted alternating 

treatment, parallel treatment designs). In a response to Wolery’s critiques, the authors of the Pilot 

Standards emphasized the importance of recognizing that they were designed specifically for use 
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as part of the WWC review process and that (as indicated by their “pilot” status) their 

development is ongoing (Hitchcock et al., 2014).  

 The Council for Exceptional Children has put forth standards for evidenced-based 

practices in special education (Council for Exceptional Children Working Group, 2014), which 

incorporate quality indicators for both between-groups designs and SCDs. Some quality 

indicators apply to both types of design, such as assessing and reporting implementation fidelity, 

whereas some indicators are design-specific. SCD-specific quality indicators include the design 

providing at least three demonstrations of the effect at at least three different times, the baseline 

phases having at least three data points (unless measuring dangerous or zero baseline behaviors), 

the design controlling typical threats to internal validity, and the study providing an appopriate 

graph of the outcome data.     

Once collected, evidence quality information can be used in several different ways. First, 

study quality variables can be used to define inclusion criteria, so that poorly conducted studies 

are screened out. Second, the quality of included studies can be summarized so that others can 

judge the strengths and weaknesses of the evidence base being synthesized. Third, this 

information can be incorporated into a meta-analysis of study results, such as by examining 

whether quality-related variables predict variation in effect size magnitude or by sequentially 

combining study results according to the quality of evidence that they provide (Detsky, Naylor, 

O’Rourke, McGeer, & L’Abbé, 1992; Higgins et al., 2011). 

Further stages of synthesis 

After identifying eligible studies, extracting results, coding study characteristics, and 

assessing the quality of evidence that they provide, the active “field work” involved in a research 

synthesis is complete. The focus then shifts to synthesizing and drawing inferences from the 
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evidence that has been assembled. These stages of the process are somewhat more technical and 

involve methods that are more specialized to SCDs, and so we discuss them in subsequent 

sections. The next section discusses effect size measures for quantifying functional relationships 

between interventions and outcomes; these indices become the main dependent variable in some 

approaches to meta-analysis. The following section discusses several approaches for meta-

analysis of data from SCDs.  

Although the remainder of the chapter focuses on effect sizes and meta-analysis, it is 

important to note that many reviews of SCDs do not use meta-analytic methods for drawing 

inferences. Instead, researchers draw conclusions about the evidentiary base for an intervention 

or practice on the basis of rules derived from professional conventions (Council for Exceptional 

Children Working Group, 2014; Hitchcock, Kratochwill, & Chezan, 2015; Kratochwill et al., 

2013). For example, the WWC Pilot Standards propose that, in order to classify a practice as 

“evidence-based,” the body of research must include at least five single-case studies that meet 

minimum design standards, were conducted by at least three independent research teams, and 

include a total of 20 or more participants.  

We see some degree of incongruence between use of these criteria and use of meta-

analytic approaches to synthesizing evidence from SCDs. Whereas the WWC evidence criteria 

are based on judgements about the presence or absence of effects across participants and 

contexts, the meta-analytic perspective focuses instead on the magnitude of effects, including 

average magnitude and the extent of variation. It seems to us that the latter perspective provides 

a more direct way to separate systematic patterns from chance findings, to reconcile conflicting 

evidence, and to draw generalizations. Still, given that methods for meta-analysis of SCDs are 

still developing rapidly and that methodological consensus has not yet been reached, it seems 
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likely that both approaches will remain in use for some time to come. Further, employing both 

perspectives side-by-side, while examining areas of agreement and discrepancies between them, 

represents an important way to move the field forward.  

The final stage in the synthesis process is to report the findings. As in any research report, 

manuscripts that report research syntheses of SCDs should describe the methods and results in 

sufficient detail to allow for independent replication. In writing up a study for publication, 

authors (as well as reviewers) will find it helpful to consult guidelines such as the Meta-Analysis 

Reporting Standards (APA Publications and Communications Board Working Group on Journal 

Article Reporting Standards, 2008) or the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (Moher, Liberati, Tetzlaff, Altman, & PRISMA Group, 2009).  

Effect Size Measures for SCDs 

On a broad level, Hedges (2008) defines effect sizes as “quantitative indexes of relations 

among variables” (p. 167). In the context of SCDs, the main relationship of interest is the 

functional relationship (i.e., causal effect) between an intervention (independent variable) and an 

outcome (dependent variable); effect sizes are thus indices that quantify the direction and 

magnitude of a functional relationship. Both direction and magnitude need to be encoded so that 

interventions that are highly effective can be distinguished from those that are actively harmful 

(i.e., a strong but negative relationship) as well as those that are inconsequential (i.e., have no or 

small effects on an outcome). 

A wide array of effect size indices have been proposed for use with SCDs. Available 

effect sizes can be classified broadly into three families: non-overlap measures, within-case 

parametric measures, and between-case parametric measures. The non-overlap measures include 

one of the oldest and most widely used SCD effect sizes—the percentage of non-overlapping 
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data (Scruggs, Mastropieri, & Casto, 1987) —and a variety of more recent proposals derived 

from non-parametric statistical methods. Non-overlap measures quantify functional relationships 

for each case in the study. The family of within-case parametric measures also involve 

quantifying functional relationships for each case, but do so based on a parametric model. 

Between-case parametric measures are a recent innovation designed to quantify average 

functional relationships at the level of the study, on a scale that facilitates comparisons to effect 

sizes from between-groups designs.  

In this section, we review effect size measures from each family. Given the large number 

of effect size measures that have been proposed for use with SCDs, our review is necessarily 

selective, focused on five effect size indices that either are widely applied in practice or have 

particular strengths that we believe warrant special consideration. Before diving into the details 

of these indices, it is useful to first review properties that an effect size index should have if it is 

to be used for synthesizing study results. Understanding these effect size desiderata will help 

researchers to select one or more appropriate effect size indices from among the many available 

candidates, as well as to critically assess the effect sizes employed in research syntheses that 

appear in the literature.  

Desirable properties of effect size indices 

To be useful in a research synthesis, an effect size index should satisfy several criteria 

(Lipsey & Wilson, 2001). First and most fundamental is that the effect size index should quantify 

functional relationships in a way that can be validly compared across studies (Hedges, 2008). 

Research syntheses often involve combining results across studies that examine similar variables, 

but which use different procedures to operationalize those variables. For example, studies 

included in a synthesis of the effects of choice-making opportunities on student problem 
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behavior (Shogren, Faggella-Luby, Bae, & Wehmeyer, 2004) varied in the type of design 

(multiple baseline or ABAB), the number of sessions per case (ranging from 12 to 40 sessions), 

and the procedures used to measure problem behavior (interval, continuous, or frequency 

recording). For an effect size index to be interpretable as a measure of functional relationship, its 

magnitude should not be strongly influenced by incidental details like these. Effect sizes metrics 

without this property will create interpretational problems for meta-analysis by introducing 

artifactual bias and obscuring substantive variation in study results. 

Second, to be useful in meta-analysis, effect size measures must be calculable from the 

information typically available in research reports. This criterion can be a major constraint for 

effect size indices used in between-groups research, where only summary statistics and selected 

quantitative results may be available. However, it is less of a constraint with single-case 

research, where raw data can be extracted reliably from graphs (Moeyaert, Maggin, et al., 2016; 

Shadish et al., 2009). This makes it feasible to calculate effect size indices that involve data 

patterns more complicated than basic summary statistics.  

Third, effect size measures should ideally be accompanied by measures of sampling 

uncertainty, such as standard errors or confidence intervals (Hedges, 2008). Standard errors 

quantify the precision of an effect size estimate—the extent to which the estimate would change 

if the study were replicated under identical conditions. Measures of uncertainty are used in meta-

analysis to determine how much weight to accord each effect size estimate, with more precise 

estimates being assigned larger weight.  

This final criterion presents a particular challenge for SCD effect sizes because SCDs 

involve repeated measurement of an outcome on each case, which suggests the need to account 

for serial dependence (auto-correlation) in the outcome data. The presence of serial dependence 
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in SCD data has long been a subject of debate (Busk & Marascuilo, 1988; Huitema & McKean, 

1998; Huitema, 1985; Matyas & Greenwood, 1996). A recent meta-analysis of auto-correlation 

levels in SCD data series indicated near-zero average levels, but also substantial variability from 

study to study in the extent of auto-correlation. This suggests that, at least in some 

circumstances, ignoring the possibility of auto-correlation may be imprudent, and there appears 

to be a growing consensus that statistical methods for SCDs should account for the possibility of 

some form of serial dependence (Horner, Swaminathan, Sugai, & Smolkowski, 2012; Wolery, 

Busick, Reichow, & Barton, 2010). Unfortunately, standard errors for some effect size indices 

are only available under the assumption that the measurements are independent, rather than 

serially dependent. Although this is a short-coming of existing effect size methods, it need not be 

a fatal flaw. Rather, the problem can be mitigated by using certain meta-analysis techniques that 

are robust to mis-estimation of standard errors, as discussed further in a later section.    

As will be seen, available effect size indices satisfy these criteria to varying degrees, and 

none meet all of them completely. Effect sizes also vary in how well they account for specific 

features of data from SCDs, such as time trends and non-normal outcome distributions. For sake 

of simplicity, our presentation focuses on effect sizes designed for the more basic case in which 

the dependent variable does not follow a systematic time trend, while providing references to 

further extensions that better handle time trends. Also for sake of simplicity, we describe the 

effect sizes with respect to a comparison between a case’s outcomes during an initial baseline 

phase (A) and the outcomes in a subsequent intervention phase (B). We discuss methods for 

handling more complicated comparisons at the end of this section.   

Non-overlap measures 
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Non-overlap measures are the oldest and most widely used effect size indices for SCDs 

(Maggin, O’Keeffe, et al., 2011). This family of measures is sometimes characterized as non-

parametric, in that their definitions are not predicated upon distributional assumptions about the 

outcome measures (Parker, Vannest, & Davis, 2011). Their development was motivated by a 

search for indices that are relatively easy to calculate, widely applicable, and intuitively 

interpretable (Scruggs & Mastropieri, 2013). Here, we focus on two measures: the widely-used 

percentage of non-overlapping data (Scruggs et al., 1987) and the recently proposed non-overlap 

of all pairs (Parker & Vannest, 2009).  

PND. The percentage of non-overlapping data (PND) was the first non-overlap measure 

to appear in the literature. For an outcome where increase is desirable, PND is defined as the 

percentage of measurements in the B phase that exceed the highest measurement from the A 

phase; for an outcome where decrease is desirable, one would instead calculate the percentage of 

B phase measurements that are lower than the minimum measurement in the A phase (Scruggs et 

al., 1987). PND can take on values between 0 and 100%. Scruggs and Mastropieri (1998) offered 

general guidelines for the interpretation of PND, suggesting that a PND value of 90% or greater 

could be interpreted as indicating a “very effective” intervention; a PND between 70% and 90% 

as indicating an “effective” one; a PND between 50% and 70% as indicating a “questionable” 

effect; and a PND of less than 50% as indicating an “ineffective” intervention (p. 224).  

Since it was first proposed, PND has been widely criticized (Shadish, Rindskopf, & 

Hedges, 2008; O. R. White, 1987; Wolery et al., 2010). Using simulation methods, Allison and 

Gorman (1994) demonstrated that the expected value of the PND statistic is strongly influenced 

by the number of sessions in the A phase, with more sessions leading to smaller values of PND, 

even when the intervention has no effect at all (see also Pustejovsky, 2015b). This procedural 
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sensitivity makes it more difficult to compare PND values across cases with different baseline 

phase lengths. Researchers have also criticized PND as not aligning well with visual inspection 

of study results (Wolery et al., 2010), for lacking methods to quantify their sampling uncertainty 

(Shadish et al., 2008), and for lacking discriminatory power (Campbell, 2012). Despite these 

objections, PND remains by far the most commonly applied effect size in systematic reviews of 

SCDs (Maggin, O’Keeffe, et al., 2011). For example, Bellini and colleagues (2007) used PND in 

a synthesis of research on school-based social skills interventions for children with autism. 

Schlosser, Lee, and Wendt (2008) reviewed how PND has been used in systematic reviews of 

SCDs and provided guidance on its application. 

 NAP. Parker and Vannest (2009) proposed the non-overlap of all pairs (NAP) statistic, 

which involves pairwise comparisons between each point in the B phase and each point in the A 

phase. For an outcome where increase (decrease) is desirable, NAP is defined as the percentage 

of all such pairwise comparisons where the measurement from the B phase exceeds (is less than) 

the measurement from the A phase. Pairs of data points that are exactly tied are counted with a 

weight of 0.5. The logical range of NAP is from 0 to 100%. When the intervention has no effect, 

the expected magnitude of NAP is 50%. In contrast to PND, the magnitude of NAP is not 

affected by the number of sessions in the A phase or the B phase, although it will be sensitive to 

other procedural factors that affect the variability of the outcomes (Pustejovsky, 2015b).  

Parker and Vannest (2009) argued that NAP has several advantages over other non-

overlap measures, including ease of calculation, better discrimination among effects in published 

SCDs, and the availability of valid standard errors and confidence intervals. As they also noted, 

NAP has been proposed as an effect size measure (under a variety of different names) in many 

other areas of application (e.g., Acion, Peterson, Temple, & Arndt, 2006; Vargha & Delaney, 
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2000). Based on visual assessment of a corpus of SCD studies, Parker and Vannest (2009) 

characterized NAP values between 0 and 65% as “weak,” values between 66% and 92% as 

“medium,” and values between 93% and 100% as “large” (p. 364). Gaskin, McVilly, and 

McGillivray (2013) employed NAP (along with several other non-overlap measures) in a 

synthesis of research on restraint reduction interventions for individuals with developmental 

disabilities.  

An approximate standard error for NAP can be calculated if the outcome measurements 

are mutually independent. Suppose that there are m sessions in phase A and n sessions in phase 

B, and let us denote the outcome data in each phase as 
1 ,...,A A

my y   and 
1 ,...,B B

ny y , respectively. 

The NAP statistic and its standard error both involve comparisons of all m × n  pairs of 

outcomes, denoted qij as for i = 1,…,m and j = 1,…,n. Let qij = 1 if B A

j iy y , qij = 0.5 if B A

j iy y , 

and qij = 0 if B A

j iy y . The NAP effect size index is then calculated as  
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m n
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  , (1)  

Hanley and McNeil (1982) proposed a method for estimating the sampling variance of a statistic 

that is equivalent to NAP. As originally developed, the estimator assumed that the outcome 

scores contained no ties; here, we present a small, ad hoc modification to account for ties. 

Calculate 
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The sampling variance of NAP can then be estimated as 
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


 , (3) 
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with standard error of NAP given by NAP NAPSE V . This standard error is based on the 

assumption that the outcomes within each phase are mutually independent; it will not be accurate 

in the presence of serial dependence.  

Other non-overlap measures. Several other indices in the family of non-overlap 

measures have developed for use with SCDs. Parker, Vannest, and Davis (2014) provide an 

expansive review, including worked examples of how to calculate each index based on graphed 

data. As an extension to NAP, Parker, Vannest, Davis, and Sauber (2011) proposed a set of 

related non-overlap measures called Tau-U, which can be used to adjust for time trends in the A 

phase, B, phase, or both. Other recently proposed indices that account for time trends include the 

percentage of non-overlapping corrected data (Manolov & Solanas, 2009) and the percentage 

exceeding median trend (Wolery et al., 2010). However, we believe that these proposed effect 

sizes are best treated as experimental, insofar as their properties have not be studied extensively 

and it is not always clear whether they can reasonably be interpreted as measures of effect 

magnitude.   

Within-case parametric measures 

 In contrast to the non-overlap measures, other effect size indices for SCDs are defined in 

parametric terms, based on distributional assumptions about the process that generated the 

observed data for a given case. This approach has the advantage that the definition of the effect 

size index is clearly separated from the statistics used to estimate it (a distinction that is less clear 

for many of the non-overlap measures). The major challenge with using parametric effect sizes 

comes in assessing whether their distributional assumptions are reasonable for the data under 

analysis. We again limit consideration to one well-known effect size index (the within-case 

standardized mean difference) and one more recent, promising index (the log-response ratio).  
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 Within-case standardized mean difference. The standardized mean difference (SMD) 

is one of the most commonly used effect size measures in syntheses of between-groups 

intervention research. In that setting, the SMD is defined as the difference in mean outcomes 

between a treatment population and a control population, scaled by the standard deviation (SD) 

of the outcome in the control population (or in both populations, if assumed to have equal 

variance). Scaling by the SD leads to an effect size index that is invariant to the scale of the 

outcome measure, so that it is meaningful to compare SMD indexes across studies that use 

different instruments to measure a common outcome construct (Hedges, 2008).  

Drawing analogies to how the SMD is used with between-groups designs, Gingerich 

(1984) and Busk and Serlin (1992) proposed a version of the SMD as an effect size for SCDs. 

This within-case SMD is defined as  

 B A

A

 





 ,  (4) 

where μA is the expected level of the outcome in the A phase, μB is the expected level of the 

outcome in the B phase, and σA is the SD of the outcome in the A phase. Although the within-

case SMD is similar in form to the SMD for between-groups design, there is a crucial difference. 

The SD used to scale the within-case measure represents within-individual variability only, 

whereas the SD used to scale the between-groups SMD represents both between- and within-

individual variability in the outcome. As a result, the two effect size measures are on quite 

different scales and are not directly comparable (Shadish, Hedges, & Pustejovsky, 2014; Van den 

Noortgate & Onghena, 2008). 

  Estimates of the within-case SMD and its sampling variance are available under the 

assumption that the outcome measures from each phase are mutually independent. Let Ay  and 
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By  denote the sample means, 
As  and 

Bs  denote the sample SDs, and m and n denote the number 

of sessions from phases A and B, respectively. Both Gingerich (1984) and Busk and Serlin 

(1992) suggested estimating the within-case SMD by plugging in sample quantities for the 

corresponding parameters, so that the within-case SMD is estimated as   /B A Ay yd s . 

However, this plug-in estimator will have a non-negligible bias when the baseline phase consists 

of only a few sessions. An approximately unbiased estimator of the within-case SMD is given by   
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(cf. Hedges, 1981). An approximate standard error for g can be calculated as   
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Randolph (2007) used the bias-corrected estimator (g) of the within-case SMD in a meta-analysis 

of research examining the effects of response cards on academic achievement. Ugille and 

colleagues (2014) examined several alternative approaches to estimating the within-case SD and 

correcting the small-sample bias of the estimator.  

It is important to emphasize that both the within-case SMD effect size estimator and its 

standard error are only valid when the outcome measurements are independent. This represents a 

crucial drawback of this effect size—not only will its variability be estimated incorrectly, but the 

effect size index itself will also be biased in the presence of serial dependence. (The bias in g 

arises because 2

As  is a biased estimator for 2

A  when the outcomes are serially dependent.) 

Extensions to the within-case SMD have been developed recently that do account for certain 

forms of serial dependence, as well as time trends in the A and B phase (Maggin, Swaminathan, 

et al., 2011).  
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 Log response ratio. In both primary studies and systematic reviews of SCDs, it is 

common to characterize functional relationships in proportionate terms—i.e., as a percentage 

change in the level of the outcome from baseline to intervention (e.g., Gaskin et al., 2013). 

Percentage change measures have also occasionally been applied in syntheses of SCDs, although 

usually without supporting statistical development (Campbell, 2003; Kahng, Iwata, & Lewin, 

2002; Marquis et al., 2000). However, a recently proposed effect size index known as the log 

response ratio (Pustejovsky, 2015a) quantifies the magnitude of functional relationships in a way 

that is closely related to proportionate change, and does have a formal statistical grounding. 

Again letting μA and μB denote the expected values of the outcome in phases A and B, 

respectively, and letting ln(.) denote the natural logarithm function, the LRR parameter is defined 

as  

  ln /B A  .  (7)  

This index is appropriate for outcomes measured on a ratio scale, such as frequency counts of 

behavior or behaviors measured using percentage duration; it would not be appropriate for 

outcomes such as rating scales, where a score of zero does not correspond to the absence of the 

outcome. The natural logarithm transformation is used because it makes the range of the index 

less restricted. When the intervention has no effect on the outcome, then μB / μA = 1 and so the 

index will be equal to zero.  

 A basic plug-in estimator for the LRR can be calculated by replacing the expected values 

with the corresponding sample means, yielding: 

  1 ln /B AyR y .  (8) 

However, this basic estimator has a small-sample bias. A bias-corrected estimator can be 

calculated as  
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y
      (9) 

and should be used when either phase contains only a small number of observations 

(Pustejovsky, 2015a). Under the assumption that the outcomes in each phase are mutually 

independent, an approximate standard error for R2 is given by  

 
2 2

2 2

A B
R

A B

s s
SE

ym ny
  .  (10) 

However, just as with standard errors for the other effect sizes described in this section, formula 

(10) is not a valid estimator if the outcomes are serially correlated; in the presence of positive 

auto-correlation it will tend to under-estimate the sampling variability of the effect size index.  

 Pustejovsky (2015a) argues that the LRR is a particularly appropriate effect size index for 

SCDs that use behavioral outcome measures measured through direct observation. One of its 

advantages is that its magnitude remains stable when outcomes are measured using different 

operational procedures, such as use of longer or shorter observation sessions or use of 

momentary time sampling instead of continuous recording. Furthermore, under certain 

circumstances, LRR effect sizes based on different dimensional constructs can nonetheless be 

directly compared. Finally, the LRR is directly related to percentage change measures of effect 

size; the latter can be calculated from the former as 

  percentage chang exe p( ) 1100%    , (11)  

where exp(.) denotes exponentiation. As a result of this algebraic relationship, meta-analysis 

based on LRR effect sizes can be translated into conceptually appealing terms of percentage 

change. One limitation of the LRR is that, as currently developed, it is based on the assumption 

that the level of the outcome is stable within each phase. Extensions for handling time trends 

appear possible in principle, but have yet to be investigated.  
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 Other within-case parametric measures. Center, Skiba, and Casey (1985) proposed 

another distinct approach to defining a within-case parametric effect size based on a piece-wise 

linear regression model. In their approach, magnitude of effect is quantified in terms of changes 

in the proportion of variance explained by the model, compared to a model that assumes no 

differences across phases. Beretvas and Chung (2008) provide a critical review of this and 

related approaches (e.g., Allison & Gorman, 1993; Faith, Franklin, Allison, & Gorman, 1996). In 

our view, this category of effect size indices is less useful than other within-case parametric 

measures because they conflate different dimensions of change in response to treatment (i.e., 

changes in level, changes in slope), which makes them less directly interpretable as measures of 

effect magnitude.  

Between-case parametric measures 

 Hedges, Pustejovsky, and Shadish (2012, 2013) proposed a novel approach to defining 

and estimating effect size indices for SCDs that are directly comparable to the SMD indices from 

between-groups designs. These between-case effect size indices involve modeling and 

summarizing the data across multiple participants simultaneous, rather than estimating separate 

effect sizes for each case. Broadly, the approach is based upon a hierarchical model that 

describes both the functional relationship for each case and how the pattern of results varies 

across the individual cases in the study. This model is then used to consider a hypothetical 

scenario: what would have happened—and how big an effect size would have been observed—if 

a between-groups experiment had been performed on the same population of participants?   

The between-case SMD effect size index is premised on a certain statistical model for the 

data, and it is important to be aware of the modeling assumptions involved. The original methods 

proposed for treatment reversal designs (Hedges et al., 2012) and multiple baseline designs 
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(Hedges et al., 2013) involve the following assumptions: (a) the baseline is stable (i.e., no 

baseline trend); (b) the intervention leads to an immediate change in level (i.e., no intervention-

phase trend); (c) the intervention effect is constant across cases; (d) the outcome is normally 

distributed about case- and phase-specific mean levels; and (e) the errors follow a first-order 

auto-regressive process. The last assumption means that the between-case SMD effect size 

estimate allows for a certain type of serial dependence, rather than assuming independence of the 

outcome measurements. The approach has also been extended to accommodate a variety of more 

general models, including those with time trends or heterogeneity of effects across cases 

(Pustejovsky, Hedges, & Shadish, 2014). Swaminathan, Rogers, and Horner (2014) proposed 

extensions that use Bayesian estimation methods.  

The calculations involved in estimating between-case SMDs and their sampling variances 

are too involved to describe here. Software for carrying them out is available in the form of an 

SPSS macro (Marso & Shadish, 2015) or a package for the R statistical computing environment 

(Pustejovsky, 2015c). Shadish, Hedges, and Pustejovsky (2014) provided detailed examples 

demonstrating how to apply the SPSS macro and interpret its output. Losinski and colleagues 

(2014) used between-case SMDs in a synthesis of the effects of self-regulated strategy 

development. 

Shadish, Hedges, Horner, and Odom (2015) argued that between-case SMD effect sizes 

have two key advantages. This first advantage is translational: these indices describe the results 

of SCD studies in a metric that is familiar to researchers who work primarily with between-

groups designs, making it more likely that SCDs will be considered for evidence-based practice 

reviews. Second, the between-case indices allow researchers to compare the results from SCDs 
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to the results from between-groups designs, which may promote a stronger understanding of the 

utility and limitations of each type of design.  

Between-case SMDs are also limited in several respects. The more basic indices (Hedges 

et al., 2012, 2013) are only available for treatment reversal (e.g., ABAB) designs, multiple 

baselines across participants, or multiple probes across participants, and the study must include 

at least three individual participants. The more flexible models (Pustejovsky et al., 2014) 

generally require data from more than three individuals. More fundamentally, between-case 

effect sizes have the limitation that they describe average effects across cases, and thus 

potentially conceal individual heterogeneity. This limitation is an inherent consequence of 

seeking comparability with between-groups effect sizes—because between-groups designs only 

provide information about average effects—and may make the approach less congruent with 

visual assessments of SCDs (cf. Kratochwill & Levin, 2014).  

Handling multiple phase-contrasts 

 Our discussion of effect sizes for single-case designs has mostly focused on indices 

comparing a single A phase with a single B phase. In practice, syntheses will often include SCDs 

that involve more elaborate designs, such as treatment reversals in which there are multiple AB 

replications for a given case. Unfortunately, there is not currently consensus on the best approach 

for dealing with studies that involve multiple phase replications. Rather, researchers have 

followed a variety of different strategies.  

 The simplest strategy is to calculate an effect size estimate based on a comparison 

between only the two phases that best capture the functional relationship of interest. For 

example, Heath and colleagues (2015) computed effect sizes comparing the initial baseline and 

the initial intervention phase only, arguing that this comparison was most compatible with the 
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comparison of phases from multiple baseline designs. In contrast, Heyvaert and colleagues 

(2014) computed effect sizes comparing the initial baseline and the final treatment phase. While 

simple, these approaches have the drawback that they do not use all available data.   

Another strategy is to pool the data across phases from common conditions, then 

calculate an effect size estimate based on the pooled samples (cf. D. M. White et al., 1989). For 

instance, in an ABAB design, data from the initial baseline (A1) and return to baseline (A2) 

would be treated as a single phase, as would data from the initial treatment phase (B1) and the 

re-introduction of treatment (B2). This approach is computationally straight-forward, but may be 

less appropriate if the outcome does not immediately return to baseline levels upon removal of 

the treatment.  

A further possibility is to calculate an effect size estimate for each phase contrast of 

interest, then average those estimates together to obtain a single effect size for each case (cf. 

Maggin, Chafouleas, Goddard, & Johnson, 2011). For example, an ABAB design might yield 

two effect size estimates, based on the comparison between phase A1 and B1 and the comparison 

between A2 and B2, or three estimates, if the comparison between A1 and B2 is included as 

well. This approach has the advantages of using all of the available data, being more consistent 

with the logic of treatment reversal designs, and yielding more precise estimates of treatment 

effects than those based on comparisons between just two phases (Maggin, Chafouleas, et al., 

2011). 

Given that several options exist, researchers conducting a synthesis will need to choose 

and justify a strategy for handling multiple phase replications. We would recommend that 

researchers take into account the context and features of the SCDs to be included in the synthesis 

when selecting a strategy. In some instances, all of the options may yield very similar results. In 
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instances where there are discrepancies, researchers should examine the included studies to 

evaluate which strategy best represents the logic of the studies’ designs.  

Meta-Analysis Methods 

In syntheses of between-groups designs, the results of each study are typically 

summarized in the form of an effect size index, and these effect size indices are then combined 

or compared using meta-analysis techniques. Meta-analysis of SCDs differs from the 

conventional approach used with between-groups designs in two crucial respects. First, data from 

SCDs has a multi-level structure and it is important to take this structure into account for both 

substantive and technical reasons. On a substantive level, single-case researchers are often 

interested in the extent to which the efficacy of a treatment varies across individuals, and this 

heterogeneity can be characterized using a multi-level structure. On a technical level, the 

outcomes for two cases within the same study are likely to be more closely related than for two 

cases drawn from different studies, due to common contextual and operational features. This 

creates dependence among cases within the same study, which must be taken into account for 

valid statistical inferences to be drawn. 

The second distinctive feature of meta-analysis of SCDs is that, compared to meta-

analysis of group designs, it is relatively feasible to use meta-analytic techniques for individual 

participant data, rather than being limited to meta-analyzing summary effect size indices. 

Although individual-participant data has several advantages for meta-analysis of between-groups 

designs (Cooper & Patall, 2009), its use is still relatively uncommon there because raw data are 

not always readily available. With single-case studies, the raw data are usually available in the 

form of graphs, making meta-analysis of individual participant data a feasible option. In this 

section, we first discuss multilevel meta-analysis techniques for synthesizing case-level effect 

size indices, and then turn to multilevel modeling of individual participant data. 
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Multilevel Meta-Analysis Model for Effect Sizes 

 Meta-analysis of effect sizes takes place in two distinct stages.  In the first stage, effect 

size indices are obtained for each case, and in the second stage these effect sizes are analyzed.  

Descriptive analyses can be done to summarize the distribution of any of the effect size estimates 

reviewed in the previous section, yielding statements about the average observed effect size and 

the range of observed effect size estimates. However, researchers often want to move beyond 

description of the observed effect sizes to make inferences about the magnitude of functional 

relationships, such as constructing a confidence interval for the average effect size or testing a 

hypothesis about whether case level characteristics (e.g., age, gender, treatment fidelity) or 

study-level characteristics (e.g., setting, treatment protocol) moderate the magnitude of effect. 

Multilevel meta-analysis allows these kinds of inferences to be made, while accounting for the 

nesting of case-level effect size indices within studies (Ugille, Moeyaert, Beretvas, Ferron, & 

Van den Noortgate, 2012; Van den Noortgate & Onghena, 2003a, 2008).   

We shall now describe the basic multi-level meta-analysis model for case-level effect 

sizes. Let Bjk denote the estimated effect size for case j in study k. At the first level of the 

multilevel meta-analysis model, the estimated effect size is modeled as the sum of the true effect 

size βjk and a sampling error: 

 
jk jk jkeB     (12) 

where the sampling error ejk is assumed to be normally distributed with mean zero and variance 

Vjk equal to the squared standard error of the effect size estimate. The second level of model 

describes variation in the true treatment effects across cases within a given study: 

 
jk k jku     (13) 
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where θk is the average (mean) true effect size for cases in study k and ujk is a random deviation 

for case j in study k, which is typically assumed to be normally distributed with mean zero and 

variance ω2. At the third level, variation in the average effect size across studies is modeled as: 

 
k kv     (14) 

Where γ is the average true effect size across all studies and vk is a random deviation for study k, 

which is typically assumed to be normally distributed with mean zero and variance τ2. 

 The multilevel meta-analysis model can be further expanded to examine the effects of 

moderator variables by including case characteristics or study characteristics as predictors in the 

level two or level three model, respectively (Van den Noortgate & Onghena, 2008). Thus, the 

parameters of the model align well with the inferential goals of meta-analysis. Specifically, the 

average effect size across studies (γ) is estimated along with its standard error, which can be used 

to create a confidence interval or test a hypothesis about the mean effect. In addition, variation in 

true effect sizes is estimated both across studies and across cases within studies (τ2 and ω2, 

respectively), both of which characterize the degree of heterogeneity in the magnitude of the 

functional relationship of interest. Finally, adding moderators into the level-2 and level-3 

equations provides a way to examine the extent to which case- or study-level characteristics 

explain variation in the magnitude of the functional relationship.  

Meta-analysis of multi-variate effect sizes. The multilevel meta-analytic model we 

presented here is a univariate model, but multivariate extensions can be made. Consider for 

example an analyst that is using the regression approach and conceptualizes two of the regression 

coefficients as effect indicators, one corresponding to the shift in level that occurs with 

intervention and the other corresponding to the shift in the slope that occurs with intervention 

(Van den Noortgate & Onghena, 2003b, 2008).  The analyst could analyze each of these 
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standardized regression coefficients separately with the previously described univariate model, 

or the analyst could analyze the two standardized regression coefficients simultaneously with a 

multivariate model (Van den Noortgate & Onghena, 2003a, 2008).   

 Estimating the model. The most common approach to estimating the multi-level meta-

analysis model is via restricted maximum likelihood, as implemented in SAS PROC MIXED 

(Littell, Milliken, Stroup, Wolfinger, & Schabenberber, 2006) or the metafor package in R 

(Viechtbauer, 2010), although other approaches are also possible. It is important to note that the 

default standard errors, confidence intervals, and hypothesis tests based on the model estimates 

will only be valid if the sampling variances of the effect size estimates (i.e., the Vjk’s) are 

accurate.  

 Robust variance estimation. As noted in the previous section, valid standard errors for 

most within-case effect sizes are only available under the assumption that the outcome 

measurements are independent. If the data are serially dependent, then the standard errors will be 

incorrect and inferences based on the multi-level meta-analysis model may become inaccurate. 

However, a technique called robust variance estimation (Hedges, Tipton, & Johnson, 2010) can 

be used to generate valid standard errors, confidence intervals, and hypothesis tests for average 

effect sizes and meta-regression coefficients (i.e., moderators) in the multi-level meta-analysis 

model, even if the standard errors of the effect size estimates are incorrect. The main drawback 

to this technique is that it requires more independent studies to achieve adequate power; also, 

when only a small number of independent studies are included in the meta-analysis, finite-

sample corrections are required (Tipton & Pustejovsky, 2015; Tipton, 2015).  Tanner-Smith and 

Tipton (2014) provide an accessible introduction to robust variance estimation and review 

available software.  
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Multilevel Model for Individual Participant Data 

 Multilevel meta-analytic models have also been developed for both raw score and 

standardized individual participant data from SCDs. Raw score models are appropriate if in each 

study the outcome measurement is comparable, such as when all studies being synthesized 

operationalize reading fluency as words read correct per minute or problem behavior as the 

proportion of 30 s intervals where the problem behavior was exhibited. Standardized score 

models become the choice when the outcome measurement is not comparable across studies. To 

standardize the raw scores, Van den Noortgate and Onghena (2008) proposed to divide the raw 

scores by the root mean-square error of a case-specific regression model (see also Moeyaert et 

al., 2013).   

Let Yijk be the outcome at time point i for case j in study k, measured in either raw or 

standardized units.  At level-1 of the multilevel model, Yijk is specified to be a function of the 

phase of the design. The model is further specified based on the analyst’s assumptions about the 

structure of the relationship between the time of observation and the outcome and about the 

distribution of errors over time (e.g., independent, normally distributed, and homogeneous; 

serially dependent, or heterogeneous). The simplest level-1 model specification would be: 

 
0 1ijk jk jk ijk ijkY D e      (15) 

where ijkD  indicates whether a given observation was in baseline (coded 0) or intervention 

(coded 1), jk0  is the mean outcome for case j in study k during the baseline phase, jk1  is the 

shift in level for case j in study k (i.e., mean difference between the intervention and baseline 

phase), and the errors ( ijke ) are assumed to be independent and normally distributed with a mean 

of 0 and variance of 2 (Owens & Ferron, 2012; Van den Noortgate & Onghena, 2003a).  In this 
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model, the magnitude of the functional relationship for case j in study k is represented by jk1  

and is assumed to be constant throughout the intervention phase.  

This level-1 model can be expanded in a variety of different ways to account for time 

trends in the baseline phase, treatment phase, or both (Rindskopf & Ferron, 2014). One 

specification of particular interest allows for a linear time trend during both phases (Huitema & 

McKean, 2000; Moeyaert, Ugille, Ferron, Beretvas, & Van den Noortgate, 2014). Let Timeijk
 

denote the session number of observation i for case j in study k. The level-1 model is then 

 
0 1 2 3ijk jk jk ijk jk ijk jk ijk ijk ijkY Time D TimeD e        (16) 

In this model, the treatment effect is assumed to change linearly with time as ijkjkjk Time31   . 

Judicious centering of the Time variable allows jk1 to be interpreted as the treatment effect at a 

point in time that is of focal interest, such as the first or final session of the intervention phase. 

Further modifications to the level-1 model have been suggested to accommodate non-linear 

trends (Hembry, Bunuan, Beretvas, Ferron, & Van den Noortgate, 2015) or designs with more 

than two phases (Rindskopf & Ferron, 2014; Van den Noortgate & Onghena, 2007). In addition, 

a variety of alternative error structures have been considered, including first order autoregressive 

models (Petit-Bois, Baek, Van den Noortgate, Beretvas, & Ferron, 2015) and models with 

heterogeneous variances across phases (Ferron, Moeyaert, Van den Noortgate, & Beretvas, 

2014).  

 After specifying a level-1 model, the analyst specifies a level-2 model to account for 

variation in the coefficients across cases within a study. For example, if Equation (15) is chosen 

for the level-1 model, the level-2 model would have two equations, one to model variation in the 

baseline level (β0jk) across cases and one to model variation in the treatment effect (β1jk) across 

cases in the study: 
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 
  (17) 

where k00  is the mean baseline level across cases in study k, k10  is the mean treatment effect 

across cases in study k, and the case specific errors ( jku0  and jku1 ) are assumed to be 

multivariate normal with means of zero and covariance uΩ , where uΩ  may be diagonal or 

unstructured (Moeyaert, Ugille, Ferron, Beretvas, & Van den Noortgate, 2016). To examine 

potential case-level moderators of the treatment effect, variables describing case-level 

characteristics could be included as predictors in Equation (17).    

 In addition to specifying level-2 equations to allow for variability between cases within a 

study, level-3 equations are specified to account for variation between studies.  For example, if 

Equation (15) is specified as the level-1 model and Equation (17) as the level-2 model, then the 

level-3 model would be: 

 
00 000 00

10 100 10

k k

k k

v

v

 

 

 

 
  (18) 

where 000  is the overall mean baseline level, 100  is the overall mean treatment effect, and the 

study specific errors ( k00  and k10 ) are assumed to be distributed multivariate normal with 

means of zero and covariance Ω , where Ω  may be diagonal or unstructured (Moeyaert, 

Ugille, et al., 2016). Study characteristics could be included as predictors in Equation (18) in 

order to examine potential moderating effects. 

 Just as with the meta-analysis model for effect sizes, the multilevel modeling of 

individual participant data yields parameter estimates that align well with the objectives of meta-

analysts. Estimates of the average treatment effect across studies (e.g., 100 ) are provided along 

with corresponding standard errors, as well as estimates of the variation in the treatment effect 



38 
 

both across studies and across cases within studies. This variation can be further explored by 

adding moderators into the level-2 and level-3 equations, which provides estimates of the 

differences in the magnitude of effects for varying case- and study-level characteristics.   

The multilevel modeling of individual data is flexible enough to allow for a variety of 

assumptions about the data, including alternative assumptions about the structural relationship of 

time with the outcome and alternative assumptions about the errors. As with any statistical 

model, care must be taken to specify a meta-analysis model that is conceptually appropriate to 

the research studies being synthesized and consistent with the data being analyzed. Finally, when 

sample sizes are small, inferences can be made more accurately when degrees of freedom are 

estimated using either Kenward-Roger or Satterthwaite approaches (Ferron, Bell, Hess, Rendina-

Gobioff, & Hibbard, 2009).  

Outstanding Issues 

The previous sections have reviewed an array of effect size indices for characterizing the 

magnitude of functional relationships, as well as for synthesizing the results of SCDs using meta-

analysis. Despite recent advances, there remain a number of limitations to existing methods, 

which create challenges for synthesizing SCDs. In this section, we comment briefly on some of 

the major outstanding issues and areas for further methodological research.  

Publication and reporting biases 

 The validity of generalizations from a research synthesis—whether based on between-

groups designs, SCDs, or both—is contingent on the assumption that the studies in the synthesis 

are representative of the full body of research relevant to the topic of investigation. In areas of 

research that rely on between-groups designs and statistical inference, there is strong evidence 

that published findings represent an incomplete and biased view of the full population of 
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research (Rothstein et al., 2005). Biases arise due to a preference—on the part of both authors 

and journals—to publish statistically significant results, coupled with analytic flexibility, 

preference for novelty, and pressures created by outside interests (Ioannidis, 2005, 2008). 

Concern about reporting bias is the main reason that many research syntheses expend great effort 

in searching for unpublished results, as we noted in a previous section. Besides searching for 

unpublished studies, a number of other meta-analytic tools have been developed for detecting 

and adjusting for reporting biases in between-groups research (e.g., Duval & Tweedie, 2000; 

Egger, Smith, Schneider, & Minder, 1997; Vevea & Hedges, 1995). 

There is good reason to expect that publication and reporting biases are likely to operate 

in single-case research as well, particularly due to the emphasis placed on visually detectable 

evidence for functional relationships (Kazdin, 2011; Kratochwill, Levin, Horner, & Swoboda, 

2014). Furthermore, Sham and Smith (2014) provided initial evidence that published SCDs 

depict larger effects than unpublished studies, and Shadish and colleagues (2016) found that 

single-case researchers tend to selection (or censor) studies for publication based on visual 

assessments of the magnitude of functional relationships. However, there are currently few 

methods for detecting or addressing reporting biases in meta-analysis of SCDs. Some recent 

research syntheses of SCDs have applied publication bias methods from between-groups 

research (Dart, Collins, Klingbeil, & McKinley, 2014; Shadish et al., 2013), but this approach is 

unlikely to be adequate because the between-groups tools are premised on the assumption that 

reporting biases arise from statistical significance testing. If syntheses of SCDs are to be used to 

inform evidence-based practice, there is a critical need to develop better tools for understanding 

and addressing reporting biases.  

Matching the analysis to the design 
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 Most effect sizes that have been proposed for use with SCDs are defined in terms of 

comparisons between a baseline (A) phase and a treatment (B) phase. These effect sizes work 

well for multiple baseline designs, in which each case is assessed in just one baseline and one 

treatment phase; using the extensions described in a previous section, they can also be applied to 

treatment reversal designs that contain multiple phase comparisons. However, it is less clear how 

they can be applied to other types of SCDs, such as alternating treatment designs, changing 

criterion designs, or hybrid designs that combine multiple strategies for experimental control. 

The flexible and creative application of design elements is viewed as a strength of single-case 

research (Gast & Ledford, 2014), and so it is clearly not ideal to exclude these designs from 

syntheses. Some initial work has been done on estimating and meta-analyzing effects from 

different types of single-case designs (Moeyaert et al., 2015), but further, broader investigation is 

warranted. Further work will need to focus on developing estimators for both within-case and 

between-case effect size indices in a way that captures the key features of these more complex 

types of designs (Horner et al., 2012; Parker & Vannest, 2012), as well as how to incorporate 

effect sizes or raw data from these designs into a meta-analysis.  

 More broadly, further research is needed on how to develop analysis procedures that 

better match the logic of how SCDs are used in practice. For example, the key feature of multiple 

baseline designs is staggering the introduction of treatment across cases, which provides a way to 

examine internal validity threats created by outside influences that are common across cases 

(Gast & Ledford, 2014; Horner et al., 2005). However, effect sizes based on within-case 

comparisons can still be biased by these outside influences. There is recent work on detecting 

such biases by using effect estimates that involve between-case (vertical) comparisons (Ferron et 
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al., 2014), but more research is needed to determine the extent and magnitude of the biases and 

to develop methods to adjust for them.  

In practice, the design of single-case studies is often guided by ongoing visual analysis of 

the data. For example, in a response-guided multiple baseline study, the baseline phase might be 

extended until the baseline data are deemed stable and the intervention staggers between cases 

might be extended to allow each successive case to demonstrate a response to the intervention 

prior to intervening with the next case (Ferron & Jones, 2006). Response-guided experimentation 

is seen as an integral feature of single-case research (Baer, Wolf, & Risley, 1968; Barlow, Nock, 

& Hersen, 2008; Kazdin, 2011), but few statistical methods for analyzing data from SCDs take 

its consequences into account. Concerns have been raised that response-guided experimentation 

may lead to biased estimates of functional relationships (Dugard, File, & Todman, 2012; Ferron 

et al., 2014). More research is needed to understand its consequences for effect size estimation 

and to develop statistical methods that take into account how single-case designs are applied in 

practice.  

Evaluating model quality 

 As we have sought to demonstrate in the previous sections, researchers interested in 

synthesizing SCDs now have a diverse range of statistical tools available. Much of the 

methodological research effort over the past decade or more has focused on expanding and 

improving upon previous methods, such as developing new non-overlap measures (e.g., Parker, 

Vannest, & Davis, 2011) and more flexible multi-level models for analyzing or meta-analyzing 

SCDs (Moeyaert, Ferron, Beretvas, & Van den Noortgate, 2014; Rindskopf & Ferron, 2014). As 

the range of options continues to expand, however, researchers will need guidance about how to 
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determine which of the many available methods are best suited for a given set of data to be 

synthesized.  

This issue can be seen as the broad question of how to evaluate model quality, where the 

model encompasses the choice of effect size index or approach to scaling the raw data and the 

meta-analytic model used to synthesize study results. In absolute terms, guidance is needed about 

how to assess whether the critical assumptions of an effect size and a meta-analytic model are 

adequate. In relative terms, methods are needed for determining which of several possible 

approaches provides the best summary description of the data. Very little work has addressed 

these questions in the context of single-case research, although it strikes us that finding ways to 

more closely integrate visual inspection with statistical modeling holds promise as a way to make 

progress (e.g., Baek, Petit-Bois, Van den Noortgate, Beretvas, & Ferron, 2014; Davis et al., 

2013).  

Conclusion 

 In this chapter, we have described the process of conducting a synthesis of single-case 

research and reviewed a selection of available methods—including effect size indices and 

approaches to meta-analytic modeling—for combining, contrasting, and examining study results. 

The volume of recent methodological developments in this area is exciting. However, it may also 

seem overwhelming to researchers (and perhaps especially to students) seeking to complete a 

synthesis project, particularly given the current lack of consensus guidance about some aspects 

of the process. Regarding the choice of effect sizes, researchers can be guided to some extent by 

the abstract criteria for what makes an effect size index useful for synthesis, as discussed in a 

previous section. Beyond this, though, we would suggest several actions that researchers can take 
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to conduct successful syntheses of single-case research, even as the methodology continues to 

evolve.  

 First, researchers can use multiple methods for meta-analyzing the data and can examine 

the extent to which their main findings hold across methods (cf. Kratochwill et al., 2013). Of 

course, using every method that has been proposed is neither practical nor desirable; sensitivity 

analysis is most compelling when based on a judicious selection of complementary analytic 

methods. In a meta-analysis of SCDs, this might involve using both a non-overlap measure and a 

within-case parametric effect size, or using a meta-analysis of effect size indices in addition to a 

meta-analysis of individual participant data.  

 Second, researchers can seek feedback or collaborate with methodologists. As several 

field leaders have emphasized (e.g., Campbell, 2012; Fisher & Lerman, 2014; Parker & Vannest, 

2012; Shadish, 2014), dialogue between methodologists and researchers with substantive 

expertise (and practical experience carrying out single-case studies) is crucial for improving the 

relevance and usability of statistical methods for single-case data. Speaking as methodologists, 

we have found collaborations to be particularly valuable because applied researchers help us to 

identify and scrutinize our underlying assumptions, while also pushing us to clarify how we 

explain things.   

 Third, researchers can enable replication and re-use of their synthesis projects by making 

the underlying data available (including study characteristics and raw outcome data). Data can be 

posted either as supplementary materials on a journal website, or through an open data repository 

such as the Open Science Framework (https://osf.io/) or Harvard Dataverse 

(https://dataverse.harvard.edu/). Providing the underlying data makes it easier for future 

syntheses to build upon existing work, thereby strengthening the contribution of the project (cf. 

https://osf.io/
https://dataverse.harvard.edu/
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Albarracín, 2015). Re-analysis and revisiting of existing syntheses is particularly important as 

methods continue to evolve. Moreover, as research synthesists, we rely on the availability of data 

from primary study reports; we should thus hold ourselves to our own highest standard by 

providing a full, complete, and readily accessible record of our work.  

Research synthesis projects are not easy or simple undertakings, yet the potential 

contributions of SCD research synthesis efforts are also considerable, in terms of providing a 

sound basis for identifying evidence-based practices, characterizing and identifying sources of 

heterogeneity in intervention effects, and even strengthening the methodology of the discipline. 

We would encourage researchers to keep these aims in mind as they conduct reviews, explore 

techniques for meta-analysis of SCDs, and further develop the methodology of single-case 

research synthesis.  
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