On internal validity in multiple baseline designs

James E. Pustejovsky The University of Texas at Austin pusto@austin.utexas.edu

SREE -- Washington, DC -- March 6, 2014

Single-case designs

- Core features:
 - Repeated measurements on a small number of individual cases.
 - Within-case comparisons of outcomes under different treatment conditions.
- Growing interest in statistical analysis, effect size measures, meta-analytic methods for single-case studies.
- Multiple baseline is most common single-case design (Shadish & Sullivan, 2011)

Sigurdsson & Austin (2008). Using real-time visual feedback to improve posture at computer workstations

Multiple baseline design (MBD)

- Key features for internal validity:
 - Deliberate introduction of treatment to cases
 - Staggered treatment introduction across cases
- My argument:
 - Appropriate analytic method depends on the specific treatment assignment mechanism.
 - Statistical analysis should account for staggered treatment introduction to maintain internal validity.

Notation and model

Structural model:

$$Y_{ij}(T_i) = \beta_{0i} + \beta_{1i} X_{ij}(T_i) + e_{ij}$$

$$\beta_{0i} = \gamma_0 + u_{0i}$$

$$\beta_{1i} = \gamma_1 + u_{1i}$$
 Average treatment effect

- *m* cases
- *n* measurement occasions
- *Y_{ij}* outcome for case *i* at time *j*, i = 1,...,*m*, j = 1,...,*n*
- T_i length of baseline phase for case *i*
- $X_{ij} = 0$ if case *i* is in baseline at time $j (j \le T_i)$
- $X_{ij} = 1$ if case *i* is in treatment at time *j* (*j* > T_i)

Random assignment of treatment times

- Uncommon in practice.
- Understood to improve internal validity (Kratochwill & Levin, 2010)
- Analytic model 1 (cf. Van den Noortgate & Onghena, 2003):

$$\begin{pmatrix} Y_{ij} \mid X_{i1}, \dots, X_{in} \end{pmatrix} = \beta_{0i} + \beta_{1i} X_{ij} + e_{ij}$$
$$\beta_{0i} = \gamma_0 + u_{0i}$$
$$\beta_{1i} = \gamma_1 + u_{1i}$$

Triage on known baseline ranks

- Suppose that...
 - Fixed set of baseline lengths $t_1, t_2, ..., t_m$.
 - Baseline lengths are assigned prior to start of study.
 - Investigator can accurately predict baseline outcome levels β_{01} , β_{02} ,..., β_{0m} .
- Triage on known baseline ranks:
 - Case with lowest baseline starts treatment first.
 - Case with 2nd lowest baseline starts treatment second.
 - Etc.

Triage on known baseline ranks

• Treatment effect estimator from Analytic Model 1 has negative bias.

Triage on known baseline ranks

• Centering the treatment indicator by case mitigates the bias.

Triage on measured baseline ranks

- Triage based on running mean outcomes as of each possible treatment assignment time.
- Case with lowest measured baseline as of time t_1 receives treatment first.
- Of the remaining cases, case with lowest measured baseline as of time t_2 receives treatment second.
- Etc.

Triage on measured baseline ranks

• Treatment effect estimator based on Analytic Model 1 has negligible biases.

Triage on measured baseline ranks

• Treatment effect estimator based on Analytic Model 2 has larger, positive biases.

Implications

- Empirical researchers using MBDs should explain how they assign treatment times to cases.
- Methodologists should specify treatment assignment mechanisms for which a proposed analytic method is valid.
- Other assignment mechanisms used in practice?