Evaluating the Transition to College Mathematics Course in Texas High Schools: Findings from the First Year of Implementation

James E. Pustejovsky¹ & Megha Joshi¹

¹ University of Texas at Austin

October 29, 2020

Author Note

James E. Pustejovsky and Megha Joshi, Educational Psychology Department, University of Texas at Austin.

This research was supported through a Greater Texas Faculty Fellows grant from Greater Texas Foundation, with additional support from the Charles A. Dana Center and the Educational Psychology Department of the University of Texas at Austin. The opinions expressed are those of the authors and do not represent the views of the Greater Texas Foundation, the Charles A. Dana Center, or the University of Texas at Austin.

Correspondence concerning this article should be addressed to James E. Pustejovsky, 1912 Speedway, MS D5800, Austin, TX 78712. E-mail: pusto@austin.utexas.edu

Abstract

Texas House Bill 5 introduced requirements that school districts partner with institutions of higher education to provide college preparatory courses in mathematics and English for high school seniors who are not yet college ready. As districts and college partners begin to respond to these provisions, there is a need for empirical research on the effects of different approaches to implementing the college preparatory courses. In response to House Bill 5 requirements, the Charles A. Dana Center has developed a model college preparatory mathematics course, Transition to College Mathematics Course (TCMC), which has been adopted by dozens of school districts across Texas over the past several school years. We examine the effects of TCMC on students' progress into post-secondary education by comparing students who participated in TCMC during the 2016-17 school year (the first year of implementation) to observationally similar students, either from a previous cohort that did not have access to TCMC or from the same cohort but who did not enroll in the course. We find that, although students who took TCMC graduated at slightly higher rates than comparison students, they had lower rates of enrollment in post-secondary education, driven by lower rates of enrollment in 4-year colleges or universities. Enrollment gradually became more similar over the four semesters following graduation from high school. We find that students who took TCMC were also less likely than students in the comparison group to pass college-level and developmental math courses. Longer-term cumulative outcomes showed stronger reductions in rates of math course passage. However, these results must be interpreted cautiously because we were unable to fully assess and account for students' college-readiness status at the start of their senior year.

Evaluating the Transition to College Mathematics Course in Texas High Schools: Findings from the First Year of Implementation

Introduction

Post-secondary education has become a gateway for economic and social mobility in U.S. society. While both federal and state policy has sought to broaden access to higher education, there remain substantial obstacles to expanding the more crucial objective of student degree completion. One challenge is that many students exit high school under-prepared for college-level work—particularly in mathematics. Bailey, Jeong, and Cho (2010) found that, across a large sample of community colleges from across the U.S., over half of entering students were deemed to be unprepared for college-level reading.

Students who are under-prepared for college-level course work are referred for or required to complete developmental courses in areas of deficit. Developmental courses are meant to help under-prepared students learn skills necessary to do well in college-level work, and large numbers of students begin such courses. For example, as of 2003-04, 59% of students entering public 2-year institutions and 33% of students entering public 4-year institutions took remedial mathematics (Chen, 2016). Moreover, low-income students and minority students are disproportionately likely to take developmental coursework (Chen, 2016).

Although developmental courses are intended to help students succeed, they may have the effect of raising barriers to success in college, hindering credit and degree completion. Attewell, Lavin, Domina, and Levey (2006) found that only 30% of students who take developmental mathematics courses pass all of the classes. Some scholars have posited that assignment to developmental courses has the effect of discouraging student persistence or diverting lower ability students into separate courses from better-prepared students (Levin & Calcagno, 2008; Scott-Clayton & Rodriguez, 2015). Evidence from a range of settings—including 2- and 4-year public institutions in Texas—indicates that participation

in conventional developmental coursework does little to improve student persistence and credit completion, relative to immediately beginning college-level coursework (Calcagno & Long, 2008; Martorell & McFarlin, 2011; Scott-Clayton & Rodriguez, 2015; Xu, 2016).

State-level policy makers and institutions of higher education are adopting a variety of policy responses to address under-preparation of students for college-level course-work (Couturier & Cullinane, 2015). Potential lines of intervention include offering developmental courses as co-requisites to college-level work (Logue, Watanabe-Rose, & Douglas, 2016); improving assessment and placement practices (Hodara, Jaggars, & Karp, 2012); or differentiating course content to better fit students' intended areas of study (Ruschow, Diamond, & Serna-Wallender, 2015). Another response focuses on the transition from high school to higher education, aiming to provide high school coursework that better aligns with the design and sequence of work at the post-secondary level. In this paper, we consider implementation of one such policy in Texas.

Texas House Bill 5

Texas House Bill 5 (HB5), introduced in the 2013 legislative session, made a number of substantial changes to state high school curriculum and graduation requirements. Among its provisions, HB5 requires school districts to offer a college preparatory mathematics course for students not meeting college readiness standards in mathematics by the end of their third year of high school. It further requires that the course be offered through a partnership with an institution of higher education—typically a community college—and that successful completion of the course must satisfy the partner institution's requirements for enrollment in college-level coursework.

As a form of early college coursework, the college preparatory math course requirement introduced by HB5 could benefit students by allowing them to bypass developmental courses and immediately begin college level work. Evidence indicates that participating in early college coursework positively impacts post-secondary persistence and degree completion (An, 2013; Giani, Alexander, & Reyes, 2014; Karp, Calcagno, Hughes, Jeong, & Bailey, 2007) and might be particularly beneficial for lower-income students (An, 2013). On the other hand, the college preparatory math course targets a different sub-group of students and has somewhat different aims than typical early college coursework. Further, if high schools and community college partners implement the course following the pattern of a conventional developmental education course (i.e., a remedial Algebra II course), then one might expect that it will have similarly weak effects. In short, the design and content of the college math preparatory course must also be considered.

Transition to College Mathematics

The Transition to College Mathematics Course (TCMC) was developed by the Charles A. Dana Center as a model college preparatory math course, aligned with the goals and requirements of the HB5. Drawing on a framework of learning objectives for the college preparatory math course developed by a statewide task force, Dana Center researchers created TCMC by melding previously developed secondary-level course materials with strategies they had used to build college-level developmental courses.

TCMC differs from conventional remedial math courses in several important respects. First, the course content aligns with the Mathematics Pathways framework (Charles A. Dana Center, 2016) adopted by many Texas higher education institutions, which recognizes the broad range of mathematical and quantitative reasoning skills needed across different fields of study and professions. Thus, the course provides a coherent sequence of work across the transition from high school to higher education. Second, the course involves novel material and instructional strategies, rather than repetition of content that students have already encountered. Third, the course incorporates evidence-based pedagogical approaches including putting greater emphasis on richly contextualized applications, developing students' self-regulated learning strategies and productive persistence, and varying instructional activities. Taken together, these differences provide reason to expect that student participation in TCMC could have immediate and longer-term impacts on student outcomes.

TCMC was offered at high schools in nine districts across central Texas during the 2016-17 school year. The following year, offerings were expanded to over thirty districts. However, as of yet there is no empirical evidence on the effects of TCMC on post-secondary outcomes.

Aim and Research Questions

In this report, we aim to evaluate the impacts of TCMC in its first year of implementation. Our guiding research question is: relative to taking typical high school coursework, what are the effects of participating in TCMC on high school graduation, post-secondary enrollment, and progress in college-level mathematics for 12th grade students enrolled in TCMC?

Methods

Within high schools that offered the course during 2016-17, enrollment in TCMC was at the discretion of students and school staff. Most students who enrolled in the course were in 12^{th} grade. Beyond that, however, schools did not follow any consistent rule for determining which students should take the course, and advising practices differed from school to school. Our identification strategy is therefore to construct comparison groups of students who did not enroll in TCMC, but who are observationally similar to the group of students who did enroll in the course. We aim to create groups that are closely matched on confounders—that is, background characteristics that may have influenced students to enroll in the course and that may be associated with later student outcomes—so that differences between the groups in later outcomes provide estimates of the impact of enrolling in TCMC. Further, we aim to estimate the effects of participating in TCMC for students who chose to participate in it—that is, an average effect of treatment for those who received treatment.

The primary assumption that must hold for our approach to identify the causal impacts of participating in the course is known as *strong ignorability* (Rosenbaum & Rubin, 1983). The assumption has two parts. The first part requires that there are no unobserved confounding variables beyond those that we account for. Our analysis therefore includes prior math course-taking patterns and a standardized measure of math achievement. Students who had not taken adequate classes earlier in high school and students who performed poorly in math may be more likely to participate in TCMC in 12th grade and may be less likely to graduate and enroll in college. We also incorporate relevant demographic variables that could influence both enrollment in TCMC and later outcomes. One potential omitted confounder is performance on Texas Success Initiative (TSI) or other standardized test that would designate students as college-ready. The second part of the strong ignorability assumption requires that propensity score distributions of the TCMC and comparison groups overlap. We provide a detailed assessment of this part of the assumption in the results section.

We considered multiple approaches for defining a comparison group. One source is the set of 12^{th} grade students from the same school and same class year as the students who enrolled in TCMC during 2016-17, but who did not enroll in the course. The advantage of using this source is that comparison students are contemporaries of the students who enrolled in TCMC, so that background characteristics and later outcome variables can be assessed at the same points in time, using consistent definitions and data sources. The primary drawback of this approach is that these comparison students have all elected *not* to enroll in the course, and thus might differ from students who participated in TCMC in ways beyond what we can measure.

An alternative source for a comparison group is students from the same school, who were in 12th grade during the 2015-16 school year—the year *prior* to when the course was first offered. To the extent that student cohorts are similar from year to year, the set of students from the prior year might provide a better point of comparison because a subset of them likely would have enrolled in TCMC, had it been available. Consequently, there may be fewer or smaller unobserved differences between students who enrolled in the course in 2016-17 and those from the prior year who did not have access to the course. However, this approach has the disadvantage that year-to-year changes in economic conditions, state education policy, or assessment methods could produce differences in outcomes between students who enrolled in TCMC and comparable students from the prior year.

Given that these two approaches have complementary advantages and drawbacks, we used *both* in order to more robustly assess the effects of participating in TCMC. We used propensity score weighting methods (Hirano & Imbens, 2001; Schafer & Kang, 2008) to construct comparison groups from each source and weighted least squares regression to estimate average treatment effects across the set of schools that offered TCMC for the 2016-17 school year. In the remainder of this section, we describe the implementation of TCMC during the 2016-17 school year, explain our data sources, and provide further details about our analytic strategy.

TCMC Implementation

In the initial year of implementing TCMC, the Dana Center worked with higher education partners to recruit high schools interested in offering the course and participating in evaluation activities. Colleges who were partnering with the Dana Center in implementing their Mathematics Pathways framework assisted with recruitment. Eighteen high schools in nine districts agreed to participate for the 2016-17 school year. To satisfy the college readiness course requirements of HB5, participating districts partnered with several different community colleges, including Austin Community College, Lone Star College, and Lee College.

Participating high schools received free curriculum materials and professional development, as well as ongoing technical support during the first year of implementation. Professional development consisted of a two-day, in-person training during the summer of 2016 and a further, one-day training during winter of 2017. In return, participating schools agreed to assist with evaluation activities by administering surveys to and providing further administrative data on students enrolled in the course.

Data Sources

We used statewide longitudinal data collected by the Texas Education Agency (TEA), and Texas Higher Education Coordinating Board (THECB). We accessed the data through the Education Research Center at The University of Texas at Austin. The data include student demographics, course enrollment and completion in elementary and secondary schools, performance on State of Texas Assessments of Academic Readiness (STAAR) assessments, and high school graduation. The data also include information on student matriculation into in-state college during 2017 and Fall of 2018. For students enrolled in public community, technical, or four-year colleges, we are also able to observe performance in college-level courses from Fall of 2017 through Fall of 2018, the first year and a half following students' senior year of high school.

Analytic Samples. Using the TEA course completion data, we identified students enrolled in classes labeled as College Preparatory Mathematics or Independent Study in Math in participating districts. To identify sections of TCMC, we compared class name, class identification, class period, teacher identification number, and the number of sections to separate evaluation data provided to us by the Dana Center. We were unable to identify any sections of TCMC in one district. Our final sample therefore included students from seventeen high schools in eight districts.

To define the treatment group, we identified 12th grade students enrolled in sections of TCMC in the eight focal districts. We excluded a small number of students who appeared to be enrolled in sections of TCMC but were not actually enrolled in the focal campuses according to the TEA attendance data.

We created two comparison groups. The first group (contemporaneous comparison)

included 12th grade students who were enrolled at the focal campuses during the 2016-17 school year but not enrolled in TCMC. The second group (previous year comparison) included 12th grade students who were enrolled at the focal campuses the previous year (the 2015-16 school year). The samples of comparison students were determined from records in the TEA attendance data, which includes information as of the end of the school year. For students who were enrolled at multiple campuses during a single year (i.e., because they switched schools mid-year), we retained the record from the school with the maximum number of eligible days.

Outcomes. We assessed the impacts of TCMC on outcomes related to students' post-secondary success. The main goal of the TCMC program was to improve student preparedness for college-level math. Thus, the primary outcomes of interest are enrollment and passage rates for college-level math courses. For completeness, we also examined enrollment and passage rates for developmental math courses at the post-secondary level. In order to affect post-secondary performance outcomes, however, students must first graduate and enroll in post-secondary education. Therefore, we also examined impacts on high school graduation and college enrollment rates as intermediate outcomes. We further dis-aggregated college enrollment rates by sector, distinguishing between community college, public four-year colleges or universities, and private four-year colleges. Finally, we examined rates of enrollment in the specific community colleges who partnered with each district to provide TCMC. We examined high school graduation rates by the end of the students' 12th grade year and we also examined cumulative graduation rates within two years after the students began TCMC. For all of the college-level outcomes, we examined cumulative rates for four semesters after the students' high school year (Fall, Spring, Summer, Fall).

Table 1Outcome definitions and sources

Outcome	Definition	Source
High School Graduation	Graduating high school.	p_graduate
Post-Secondary Enrollment	Enrollment in community college, public and private four year-institutions, or health programs.	$\rm cbm_001$
Post-Secondary Enrollment: Public Four Year	Enrollment in public four-year colleges.	cbm_001
Post-Secondary Enrollment: Private Four Year	Enrollment in private four-year colleges.	cbm_001
Post-Secondary Enrollment: Community	Enrollment in community colleges.	$\rm cbm_001$
Post-Secondary Enrollment: Partner	Enrollment in community colleges that partnered with the focal districts to offer TCMC.	cbm_001
Post-Secondary Math Enrollment: College-Level	Enrollment in non-developmental college math courses. For all the outcomes below based on cbm_00s, we excluded students who took courses for dual credit. We excluded lab, co-op, internship, clinical and practicum courses.	cbm_00s
Post-Secondary Math Enrollment: Developmental	Enrollment in developmental college math courses.	cbm_00s
Post-Secondary Math Passing: College-Level	Passing non-developmental college math courses. For duplicated records, we kept the passing grade.	$\rm cbm_00s$
Post-Secondary Math Passing: Developmental	Passing developmental college math courses. For duplicated records, we kept the passing grade.	$\rm cbm_00s$

Table 1 provides definitions of the outcomes and lists the data sources from which they were obtained. We obtained data on high school graduation from TEA graduation datasets. We obtained college enrollment and course-taking data from THECB enrollment and course datasets. We excluded non-degree seeking students and dual-credit students from our analyses. Two important scope limitations are important to note. First, our analysis of post-secondary outcomes is limited to students who enrolled in institutions of higher education within the state of Texas, as recorded in THECB data. Second, analysis of math course enrollment and math passing rates is limited to students enrolled in community, technical, or public four-year institutions within Texas because course-taking data on private four-year institutions is not available. Given that only 1 to 2 % of the sample enrolled in private four-year institutions, omission of math course enrollment and passing at these institutions should not meaningfully alter our results.

Covariates. Our ability to identify the effects of enrolling in TCMC hinges on controlling for student characteristics that could be confounders. We therefore identified an extensive set of background characteristics for use in developing propensity score weights and estimating impacts. Our main covariates included current demographic status and history, program and service enrollment history, prior math course enrollments, and prior math performance. Because TCMC is designed for students who are under-prepared for college-level math courses, it is highly likely that prior math course-taking and achievement influenced whether students were advised or required to take TCMC and, and prior math achievement is also clearly related to later student outcomes. With respect to student socio-economic background, Michelmore and Dynarski (2017) demonstrated that the effects of economic disadvantage on educational outcomes can be better captured by using longitudinal measures of income that estimate duration of disadvantage than by using a single point-in-time measure. We therefore included longitudinal measures of economic disadvantage as well as immigrant status, history of special education enrollment, gifted enrollment, and drop-out at-risk status.

Table 2			
Covariate	definitions	and	sources

Variable	Definition	Source
Sex Race/Ethnicity	Sex- male/female. Race/ethnicity- Asian American, African American, Hispanic,	p_attend_demog p_attend_demog
Economic disadvantage	American Indian, Pacific Islander, Multiracial, and White. Indicates economic disadvantage status: free lunch status, reduced lunch status, no disadvantage or other disadvantage. We dummy	p_attend_demog &
	coded the variable and took the average of the data from the attend and enroll datasets for the 12th grade year.	p_enroll_demog
At risk for dropping out	Indicates whether a student was at risk for dropping out of school according to state-defined criteria as of the beginning of the 12th grade year .	p_enroll_demog
Giftedness	Indicates whether a student participated in state-approved gifted and talented program. We took the average of the data from the attend and enroll datasets for the 12th grade year.	p_attend_demog & p_enroll_demog
Immigrant status	Indicates whether a student was identified as an immigrant according to the definition in Title III of No Child Left Behind Act of 2001- individuals who are aged 3 through 21, were not born in any state, and have not been attending one or more schools in any one or more states for more than three full academic years. The data is from the beginning of the 12th grade year.	p_enroll_demog
Special education	Indicates whether a student participated in special education	p_attend_demog
status	instructional and related services program or general education program using special education services, supplementary aids, or other special arrangements. We took the average of the data from the attend and appell detects for the 12th grade way	& p_enroll_demog
Limited English proficiency	the attend and enroll datasets for the 12th grade year. Indicates whether a student was limited English proficient as determined by Language Proficiency Assessment Committee (LPAC) as of the end of the 12th grade year.	p_attend_demo
Prior math course-taking	Indicates whether a student took Grade 8 Mathematics (four years prior), Algebra I (three and four years prior), Geometry (two and three years prior), Algebra II (one and two years prior) and Pre-calculus (one year prior). Variables for these courses indicated if the student passed, failed, or did not take the class in the given year.	p_course_compl
Prior math performance	STAAR end-of-course exam score for Algebra I. For the comtemporaneous comparison, we traced the data from 2016 to 2013. For the previous comparison, we traced the data from from 2016 to 2013 for the TCMC group and from 2015 to 2012 for the comparison group. For duplicate scores (i.e., if the students took the test in multiple years), we kept the earliest score.	staareoca1
History of economic disadvantage, at-risk for dropping out, giftedness, immigrant status, and special education status	For the contemporaneous comparison, we tracked these variables from 2016 to 2009. For the previous comparison, we tracked back from 2016 to 2009 for the TCMC group and 2015 to 2008 for the comparison group. Variables include (1) the number of years of available tracked data; (2) the number of years that a student was indicated as being in any of the categories for economic disadvantage and the number of years that the student was indicated as being in special education program, in gifted program, an immigrant, and at risk; (3) the proportion of years (the number of years the student was in the category divided by the number of years of record available) for the economic disadvantages categories; and, (4) if the student was ever indicated as being in special	p_enroll_demog (p_attend did no have data earlier than 2010 for economic, and does not contain at-risk or immigrant)

We assembled the following covariates:

- (1) Current demographic and program enrollment status: Sex, race/ethnicity categories, immigrant status, economic disadvantage status¹, gifted program enrollment, special education program enrollment, and dropout at-risk status. These variables were drawn from the attendance and enrollment data from the 12th grade year.
- (2) Demographic and program enrollment history: The number of years of available data; the number of years that a student was indicated as being in any of the categories for economic disadvantage and the number of years that the student was indicated as being in special education program, in gifted program, an immigrant, and at risk for dropping out; the proportion of years (the number of years the student was in the category divided by the number of years of record available) for the economic disadvantage categories; and whether the student was ever indicated as enrolled in a special education program, enrolled in a gifted program, an immigrant, and at risk. For the contemporaneous comparison group and the TCMC group, we traced the history from 2016 to 2009. We traced the previous-year comparison group's history from 2015 to 2008.
- (3) Math course-taking history: For both contemporaneous and previous comparisons, we gathered data on whether students took (and passed or failed or did not complete) 8th grade math (four years prior), Algebra I (three and four years prior), Geometry (two and three years prior), Algebra II (one and two years prior), and Precalculus (one year prior).
- (4) STAAR scores: Score on Algebra I end-of-course exam. We retained the earliest score if a student took the test multiple times. For the contemporaneous comparison group and the TCMC group, we traced scores from 2016 to 2013; for the previous year

¹ Economic disadvantage categories include: eligibility for free lunch as part of the National School Lunch And Child Nutrition Program (NSLP), eligibility for reduced-price lunch under NSLP, and other economic disadvantage. Other economic disadvantage is determined from sources other than NSLP eligibility, including having annual income below the federal poverty line or being eligible for public assistance such as through Temporary Assistance to Needy Families.

comparison group, we traced scores from 2015 to 2012.

Full definitions of these variables and data sources from which they were obtained are in Table 2. For categorical variables with missing data, we created an additional category indicating missingness. For continuous variables, missing data were imputed with the mean of the variable in the TCMC group within the given high school. For the continuous variables, we also created additional variables indicating missing values (Rosenbaum & Rubin, 1984).

Tables 3 through 5 show the distribution of the covariates in the TCMC and the two comparison groups. The TCMC group had higher percentages of African American and Hispanic students while the contemporaneous comparison group had a higher percentage of white students. Relative to the contemporaneous comparison group, the TCMC group had a higher percentage of students receiving free lunch, higher percentages of students who were at risk for dropping out and were ever at risk, lower percentages of students who were in gifted programs and ever in gifted programs, and lower percentages of students currently in special education programs and ever in these programs. The TCMC group also had higher average number and proportion of years of receiving free lunch and having other disadvantage, lower average number and proportion of years of receiving reduced-price lunch and being not economically disadvantaged, higher average number of years of being at risk for graduation, and lower average number of years of being in gifted programs and being in special education programs.

In terms of academics, the TCMC group had lower average Algebra I STAAR scores than either the contemporaneous or previous-year comparison group. A higher percentage of the contemporaneous comparison group took Algebra I, Geometry, Algebra II and Precalculus a year prior to when they would normally be required to take the courses. This comparison group also had higher passing rates for these courses. For students who took Algebra I, Geometry and Algebra II in the year required, those in the TCMC group had higher passing rates than those in the comparison group.

Table 3

 $Distribution \ of \ Covariates$

Variable	TCMC	Contemporaneous	Previous
Sample Size			
N	1090	6777	7614
Sex			
Female	49%	49%	49%
	1070	1070	1070
Race or Ethnicity	~107	007	007
Asian American	<1%	2%	2%
African American	17%	15%	17%
Hispanic	62%	54%	53%
American Indian	<1%	<1%	<1%
Pacific Islander	<1%	<1%	<1%
Multiracial	2%	< 2%	$<\!\!2\%$
White	18%	26%	26%
Economic Disadvantage			
Free Lunch	52%	45%	26%
Reduced Lunch	9%	8%	4%
Not Disadvantaged	37%	44%	42%
Other Disadvantage	2%	2%	27%
At Risk			
At Risk	68%	54%	52%
At Risk Ever	81%	68%	72%
	0170	0070	1270
Giftedness	~~~	~	
Giftedness	2%	10%	10%
Giftedness Ever	6%	13%	13%
Immigrant			
Immigrant	$<\!\!3\%$	2%	1%
Immigrant Ever	6%	5%	5%
Limited English Proficiency			
Limited English Proficiency	8%	7%	6%
0	570	• 70	070
Special Education	~~~	~	~~~
Special Education	2%	10%	9%
Special Education Ever	5%	13%	12%
Missingness			
Algebra 1 STAAR Missing	7%	14%	12%
At Risk Missing	$<\!1\%$	2%	2%
At Risk Ever Missing	1%	2%	2%
Giftedness Ever Missing	1%	2%	2%
Immigrant Missing	$<\!1\%$	2%	2%
Immigrant Ever Missing	1%	2%	2%
Special Education Missing	1%	2%	2%
Tracking Missing	1%	2%	2%

Table -	4
---------	---

Distribution of Covariates

	TCI	MC	Contemp	oraneous	Prev	Previous	
Variable	М	SD	М	SD	М	SD	
Demographic Tracking Number of Years	7.26	1.82	7.16	1.93	7.19	1.93	
Economic Disadvantage History							
Free Proportion of Years	0.49	0.37	0.45	0.39	0.47	0.39	
Free Number of Years	3.72	2.93	3.37	3.01	3.55	3.07	
Reduced Proportion of Years	0.06	0.13	0.07	0.15	0.08	0.16	
Reduced Number of Years	0.46	1.04	0.52	1.14	0.60	1.25	
Not Disadvantaged Proportion of Years	0.32	0.39	0.40	0.42	0.39	0.42	
Not Disadvantaged Number of Years	2.33	2.96	2.84	3.18	2.84	3.17	
Other Disadvantage Proportion of Years	0.13	0.20	0.09	0.17	0.06	0.13	
Other Disadvantage Number of Years	0.82	1.09	0.57	0.97	0.35	0.74	
At Risk History							
At Risk Number of Years	3.84	2.91	3.30	3.05	3.48	3.04	
Giftedness History							
Gifted Number of Years	0.29	1.28	0.79	2.15	0.74	2.11	
Immigrant History							
Immigrant Number of Years	0.13	0.53	0.10	0.48	0.11	0.51	
Special Education History							
Special Education Number of Years	0.22	1.10	0.78	2.19	0.69	2.07	
STAAR Scores							
Algebra 1 End of Course STAAR Scores	3867.09	291.36	3969.32	414.96	3915.10	386.91	

Imbalances between the previous year comparison group and the TCMC group were similar to those in the contemporaneous comparison, except that the percentages of African American students were the same across the TCMC and comparison group. The TCMC group also had a higher percentage of students receiving reduced-price lunch and lower percentage of students classified as other economic disadvantage , whereas these percentages did not differ much between the TCMC and contemporaneous comparison groups.

Analytic Models

We used propensity score analysis and weighted outcome regression to estimate the average causal effect of participating in TCMC compared to taking typical high school coursework. All analyses were conducted in R (version 3.3.1; R Core Team, 2016).

Table 5	
Course	History

Course	Group	Pass	Fail	Incomplete	Did not take	Missing
Math Grade 8						
Math Grade 8 4 Yrs	TCMC	18%	$<\!2\%$	$<\!1\%$	72%	9%
	Contemporaneous	13%	$<\!1\%$	$<\!1\%$	76%	9%
	Previous	14%	$<\!\!1\%$	$<\!1\%$	76%	< 9%
Math Grade 8 A 4 Yrs	TCMC	62%	$<\!\!3\%$	$<\!1\%$	26%	9%
	Contemporaneous	48%	$<\!\!2\%$	$<\!1\%$	40%	9%
	Previous	49%	$<\!2\%$	$<\!1\%$	40%	8%
Algebra I						
Algebra I 4 Yrs	TCMC	$<\!6\%$	$<\!\!1\%$	$<\!1\%$	86%	9%
	Contemporaneous	20%	$<\!1\%$	$<\!1\%$	70%	$<\!\!10\%$
	Previous	18%	$<\!\!1\%$	$<\!1\%$	72%	< 9%
Algebra I 3 Yrs	TCMC	80%	7%	$<\!1\%$	8%	< 5%
	Contemporaneous	56%	8%	$<\!1\%$	31%	$<\!\!6\%$
	Previous	60%	8%	$<\!1\%$	26%	< 6%
Algebra II						
Algebra II 2 Yrs	TCMC	5%	$<\!1\%$	<1%	91%	$<\!\!4\%$
	Contemporaneous	20%	$<\!\!2\%$	$<\!1\%$	75%	4%
	Previous	19%	$<\!\!2\%$	$<\!1\%$	75%	4%
Algebra II 1 Yr	TCMC	72%	16%	$<\!1\%$	10%	$<\!\!2\%$
	Contemporaneous	39%	5%	$<\!1\%$	54%	$<\!\!2\%$
	Previous	41%	7%	$<\!1\%$	50%	$<\!\!2\%$
Geometry						
Geometry 3 Yrs	TCMC	< 5%	$<\!1\%$	<1%	89%	5%
	Contemporaneous	20%	$<\!1\%$	<1%	73%	6%
	Previous	18%	$<\!\!2\%$	<1%	75%	6%
Geometry 2 Yrs	TCMC	81%	7%	$<\!1\%$	9%	$<\!\!3\%$
Algebra II 1 Yr Geometry Geometry 3 Yrs Geometry 2 Yrs	Contemporaneous	56%	9%	$<\!1\%$	31%	$<\!\!4\%$
	Previous	54%	10%	$<\!1\%$	32%	$<\!\!4\%$
Precalculus						
Precalculus 1 Yr	TCMC	3%	$<\!1\%$	<1%	95%	$<\!\!2\%$
	Contemporaneous	19%	< 2%	<1%	78%	2%
	Previous	17%	$<\!\!1\%$	<1%	80%	2%

Note: For two-semester courses, percentages reflect performance in second semester. 8th Grade Math A refers to a year long non-high school course. Yrs or Yr indicates the number of years before 12th grade when the students took the course.

To construct comparison groups, we used a recently developed algorithm called the generalized boosted regression model (GBRM; McCaffrey, Ridgeway, & Morral, 2004), an extension of propensity score methods introduced by Rosenbaum and Rubin (1983). A student's propensity scores represent the probability that they participate in the program (i.e., enroll in TCMC) as a function of their observed characteristics. Traditionally,

propensity scores have been estimated using logistic regression of treatment status on the set of covariates. GBRM differs from standard methods in that it is a non-parametric model, which does not impose strong assumptions about the functional form of the relationship between the propensity score and the covariates. Furthermore, rather than estimating the model by optimizing predictive fit, GBRM directly optimizes a measure of comparability between treated and untreated units. Thus, GBRM is particularly well-suited for estimating propensity scores based on a large set of covariates, as we use here (Lee, Lessler, & Stuart, 2009; McCaffrey et al., 2004).

We estimated propensity scores via GBRM with the twang package (version 1.4-9.5; Ridgeway, McCaffrey, Morral, Griffin, & Burgette, 2016). Following the recommendations of the package authors, we specified number of trees to be 5000, interaction depth of 3, and shrinkage of .01. We specified the estimand to be Average Treatment Effect for the Treated (ATT). We included in the propensity score model all of the covariates listed in Table 2. Due to small sample size in the TCMC group within each school, we did not estimate propensity scores separately for each school. Rather, we included schools and districts as additional covariates in the propensity score model, which has the effect of allowing the GBRM algorithm to discover school-by-covariate interactions that improve balance.

Based on the propensity score model estimated using GBRM, ATT weights were calculated as

$$w_{ij} = D_{ij} + (1 - D_{ij}) \left(\frac{\hat{p}_{ij}}{1 - \hat{p}_{ij}}\right)$$
(1)

Here, w_{ij} is the ATT weight for student *i* from school *j*, D_{ij} is an indicator term equal to one if the student was enrolled in TCMC, and \hat{p}_{ij} is the estimated propensity score for the student. Weights were standardized to sum to one within the TCMC and comparison groups.

To estimate the average effect of enrolling in TCMC for students who participated in the course, we regressed each outcome on the covariates, indicators for each school, covariate-by-treatment interactions, and school-by-treatment interactions. We used the following analytic model:

$$Y_{ij} = \alpha_j + \beta_j D_{ij} + \gamma X_{ij} + \delta X_{ij} D_{ij} + e_{ij}$$
⁽²⁾

Here, Y_{ij} is the outcome of student *i* in school *j*, α_j is an indicator for the school in which the student is enrolled, D_{ij} is an indicator equal to one if the student was enrolled in TCMC and equal to zero if the student was in the comparison group, and X_{ij} is a set of covariates encoding student background characteristics. The set of covariates included all the variables listed in Table 2. Treatment was allowed to interact with each of the covariates, with δ representing the vector of interactions. Treatment was also allowed to interact with school, thereby allowing that the effects of participating in TCMC could vary by school. Categorical covariates were dummy coded. Each covariate was centered at its unweighted mean in the treated group within each school. Because the covariates were centered in this way, β_j term represents the school-specific ATT and α_j represents the expected school-specific average outcome if the students in the TCMC group had not taken the course.

To estimate an overall average effect for students who took TCMC (β), we calculated a weighted average of the school-specific estimates, with weights based on the size of the TCMC group in each school. Let N_{1j} denote the number of students enrolled in TCMC in school j and N_1 denote the total number of students enrolled in TCMC across schools. We then calculated the overall average treatment effect estimate as:

$$\hat{\beta} = \sum_{j=1}^{J} \left(\frac{N_{1j}}{N_1}\right) \hat{\beta}_j,\tag{3}$$

where $\hat{\beta}_j$ is the school-specific estimate. To calculate the standard error of the overall estimate, we first calculated standard errors for the school-specific estimates using HC2-type standard errors (Zeileis, 2004, version 2.3–4), which are robust to heteroskedasticty in the regression errors of Equation (2). Let V_j be the estimated sampling variance of β_i . The variance of the overall average treatment effect was then calculated as:

$$V^{\beta} = \sum_{j=1}^{J} \left(\frac{N_{1j}}{N_1}\right)^2 V_j.$$
 (4)

We conducted hypothesis tests and calculated 95% confidence intervals for the average effect based on large-sample normal approximations.

Results

Propensity Score Distribution: Common Support

Figure 1 shows the distribution of logit propensity scores for the TCMC and comparison groups, with the contemporaneous comparison in the left-hand panel and previous year comparison in the right-hand panel. The figure shows the distribution of the weighted and the unweighted propensity scores of the comparison groups. We can see that there are TCMC students (in blue) with extremely high, non-overlapping scores for both comparisons. These students may not have comparable corresponding students in the comparison groups. To satisfy the strong ignorability assumption, we excluded some TCMC students with extreme propensity scores from our analyses.

Table 6 reports sample sizes and effective sample sizes in each group for the contemporaneous comparison and the previous-year comparison, after excluding students with extreme propensity scores. In the table, the effective sample size corresponds to the number of observations from an unweighted sample that would yield the same level of precision as a weighted sample (Ridgeway et al., 2016).

Table 6

Sample sizes for contemporaneous and previous-year comparisons

Quantity	TCMC	Contemporaneous	Previous
Sample size (unweighted) Effective sample size (weighted)	$\begin{array}{c} 1006 \\ 1006 \end{array}$	$6777 \\ 2452$	7614 1392

Table 7 reports the distributions of the ATT weights for the contemporaneous and

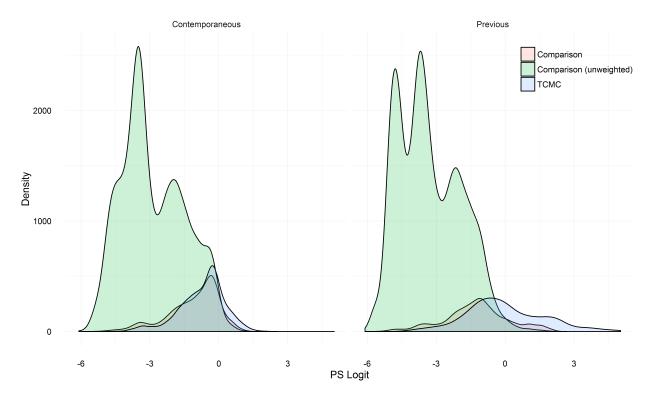


Figure 1. Propensity score support

the previous-year comparison groups. Note that the ATT weights for TCMC groups are 1 for all students who took the TCMC course. The largest weight in the contemporaneous comparison is around three and the largest weight in the previous-year comparison is around seven. These weights are reasonably close to the treatment group weights.

Table 7

Weight distribution for Contemporaneous and Previous-Year Comparisons

Comparison	80%	95%	99%	100%
Contemporaneous Previous			$\begin{array}{c} 1.015\\ 0.924\end{array}$	

Covariate Balance

We assessed balance on all of the covariates that were included in the propensity score model. Figures 2 and 3 show results of the balance assessment for the contemporaneous and previous year comparison respectively. For continuous covariates, the

variables were standardized (by the overall standard deviation across groups) and mean differences were calculated. For binary covariates, raw differences in proportions were calculated. Standardized mean differences and differences in proportions were calculated before (Unadjusted) and after (Adjusted) propensity score weighting. The dashed line in the figures below represent threshold values of -.1 and .1, as recommended by Stuart (2008); mean differences within the dashed lines indicate acceptable levels of imbalance.

After weighting based on propensity scores, mean differences on the covariates were close to zero for all the covariates for both the contemporaneous and previous year comparison groups. In the previous year comparison, economic other years and percent fall slightly to the right of the line, indicating remaining unbalance larger than 0.1. For the variable economic other years, students in the TCMC group were classified as economically disadvantaged (other) by about 0.12 years longer, on average, than students in the previous-year comparison group. The variable economic other percentage is closely related, as the remaining imbalance indicates that, relative to the previous-year comparison students, students in the TCMC group were classified as economically disadvantaged (other) by about 15% more of their available demographic history.

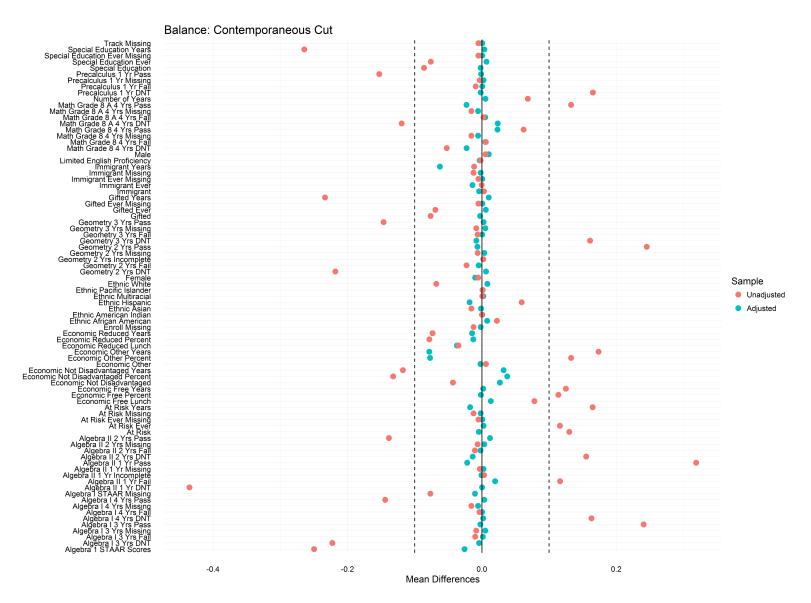


Figure 2. Balance results: Contemporaneous comparison

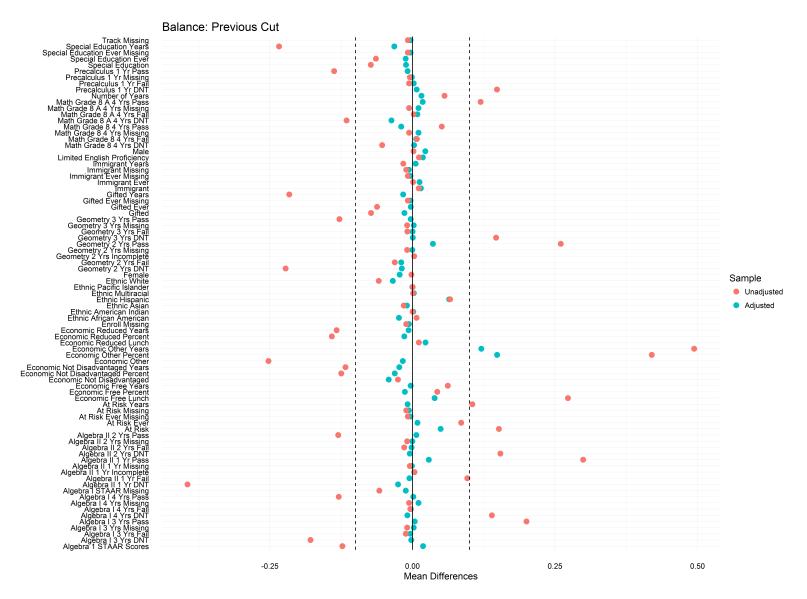
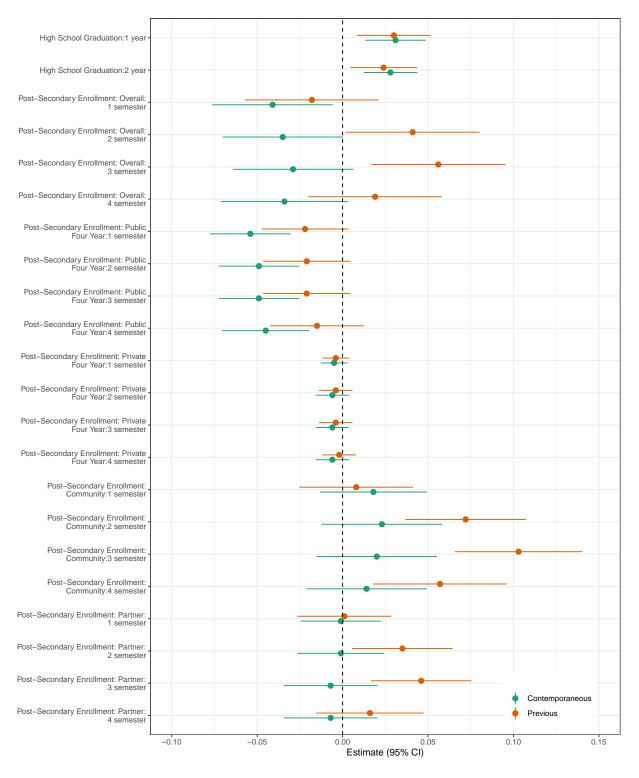
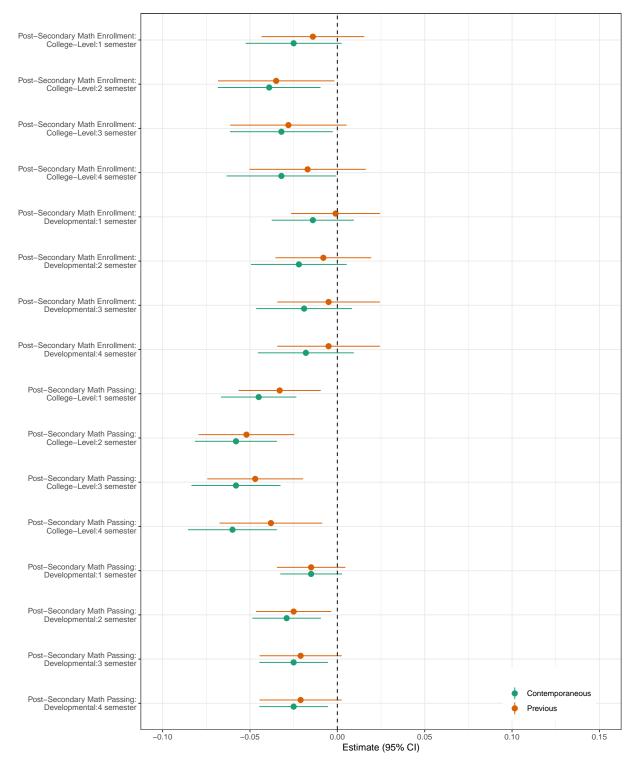


Figure 3. Balance results: Previous year comparison


Impact Estimates

Figures 4 and 5 and Tables 8 and 9 report impact estimates for the full set of outcomes that we examined. Figures 4 and 5 depicts the estimated effects of taking TCMC averaged across schools, along with the 95% confidence interval bands, for the contemporaneous and previous year comparisons. The dashed line on zero indicates no effect; interval bands that cross the dashed line correspond to estimates that are not statistically distinguishable from zero.


Tables 8 and 9 presents estimated rates of the outcomes for the TCMC and each of the comparison groups. The rates for the comparison groups can be interpreted as baselines—that is, the rates that would have been observed if no students participated in TCMC. The columns labeled "Difference" are the differences between the TCMC group and the comparison groups, which are the estimated effects of taking TCMC. The tables also reports standard errors (SE) and p-values (p) associated with the impact estimates. We discuss statistically significant results based on conventional levels of $\alpha = 0.05$.

We found that participating in TCMC resulted in a small, statistically significant increase in high school graduation rates for both contemporaneous and previous comparisons. The increase in graduation rates is similar when measured as of the year that the students were enrolled in 12th grade and when assessed cumulatively within two years of enrollment in 12th grade.

In contrast to the average effect on high school graduation, we estimated that participating in TCMC resulted in a *reduction* in overall college enrollment for the contemporaneous comparison. The magnitude of the difference was diminished in the second, third, and fourth semester after graduation compared to the first fall semester. For the previous year comparison, we estimated that participating in TCMC resulted in a small and non-significant reduction in overall college enrollment in the first semester after graduation. However, we observed a statistically significant increase in the second and third semesters after graduation.

Figure 4. Overall average effects of taking TCMC on high school graduation and postsecondary enrollment rates, based on contemporaneous and previous year comparison groups.

Figure 5. Overall average effects of taking TCMC on math course taking and course passing rates, based on contemporaneous and previous year comparison groups.

Table 8Estimated average effects of TCMC on high school graduation and post-secondary enrollment rates

		Contem	nporaneous			Previous				
Outcome	TCMC	Comparison	Difference	SE	р	TCMC	Comparison	Difference	SE	р
High School	Gradua	tion								
1 year	95.5	92.5	3.1	0.9	0.001	95.5	92.5	3.0	1.1	0.009
2 year	96.5	93.7	2.8	0.8	0.001	96.5	94.2	2.4	1.0	0.021
Post-Second	lary Enro	ollment: Ove	rall							
1 semester	33.5	37.6	-4.1	1.8	0.020	33.5	35.3	-1.8	2.0	0.367
2 semester	39.9	43.3	-3.5	1.8	0.061	39.9	35.8	4.1	2.0	0.045
3 semester	41.4	44.3	-2.9	1.8	0.115	41.4	35.8	5.6	2.0	0.006
4 semester	43.7	47.2	-3.4	1.9	0.063	43.7	41.9	1.9	2.0	0.364
Post-Second	lary Enro	ollment: Pub	lic Four Ye	ear						
1 semester	10.5	15.9	-5.4	1.2	< 0.001	10.5	12.7	-2.2	1.3	0.091
2 semester	11.3	16.3	-4.9	1.2	< 0.001	11.3	13.4	-2.1	1.3	0.112
3 semester	11.3	16.3	-4.9	1.2	< 0.001	11.3	13.5	-2.1	1.3	0.108
4 semester	12.8	17.3	-4.5	1.3	0.001	12.8	14.3	-1.5	1.4	0.286
Post-Second	lary Enro	ollment: Priv	ate Four Y	ear						
1 semester	1.4	1.9	-0.5	0.4	0.240	1.4	1.8	-0.4	0.4	0.396
2 semester	1.5	2.1	-0.6	0.5	0.226	1.5	1.9	-0.4	0.5	0.427
3 semester	1.5	2.1	-0.6	0.5	0.226	1.5	1.9	-0.4	0.5	0.427
4 semester	1.7	2.3	-0.6	0.5	0.241	1.7	1.9	-0.2	0.5	0.655
Post-Second	lary Enro	ollment: Con	nmunity							
1 semester	21.6	19.8	1.8	1.6	0.257	21.6	20.8	0.8	1.7	0.646
2 semester	27.9	25.7	2.3	1.8	0.199	27.9	20.8	7.2	1.8	< 0.001
3 semester	31.0	29.0	2.0	1.8	0.269	31.0	20.8	10.3	1.9	< 0.001
4 semester	34.0	32.6	1.4	1.8	0.441	34.0	28.3	5.7	2.0	0.005
Post-Second	lary Enro	ollment: Part	ner							
1 semester	11.6	11.8	-0.1	1.2	0.916	11.6	11.5	0.1	1.4	0.933
2 semester	15.0	15.1	-0.1	1.3	0.963	15.0	11.5	3.5	1.5	0.018
3 semester	16.1	16.8	-0.7	1.4	0.613	16.1	11.5	4.6	1.5	0.002
4 semester	17.8	18.5	-0.7	1.4	0.604	17.8	16.2	1.6	1.6	0.338

Table 9Estimated average effects of TCMC on math course taking and course passing rates

		Conten	nporaneous			Previous				
Outcome	TCMC	Comparison	Difference	SE	р	TCMC	Comparison	Difference	SE	р
Post-Second	ary Mat	h Enrollmen	t: College-l	Level						
1 semester	14.7	17.2	-2.5	1.4	0.066	14.7	16.1	-1.4	1.5	0.356
2 semester	19.3	23.2	-3.9	1.5	0.010	19.3	22.8	-3.5	1.7	0.038
3 semester	20.5	23.7	-3.2	1.5	0.037	20.5	23.3	-2.8	1.7	0.105
4 semester	21.6	24.8	-3.2	1.6	0.037	21.6	23.3	-1.7	1.7	0.325
Post-Secondary Math Enrollment: Developmental										
1 semester	9.5	11.0	-1.4	1.2	0.230	9.5	9.7	-0.1	1.3	0.910
2 semester	12.2	14.4	-2.2	1.4	0.100	12.2	13.0	-0.8	1.4	0.583
3 semester	12.7	14.6	-1.9	1.4	0.162	12.7	13.2	-0.5	1.5	0.732
4 semester	12.8	14.7	-1.8	1.4	0.178	12.8	13.3	-0.5	1.5	0.743
Post-Second	ary Mat	h Passing: C	ollege-Leve	el						
1 semester	8.0	12.5	-4.5	1.1	< 0.001	8.0	11.2	-3.3	1.2	0.005
2 semester	11.4	17.3	-5.8	1.2	< 0.001	11.4	16.6	-5.2	1.4	< 0.001
3 semester	12.6	18.4	-5.8	1.3	< 0.001	12.6	17.3	-4.7	1.4	0.001
4 semester	13.5	19.5	-6.0	1.3	< 0.001	13.5	17.3	-3.8	1.5	0.010
Post-Second	ary Mat	h Passing: D	evelopmen	tal						
1 semester	4.3	5.7	-1.5	0.9	0.091	4.3	5.7	-1.5	1.0	0.129
2 semester	5.6	8.5	-2.9	1.0	0.004	5.6	8.1	-2.5	1.1	0.028
3 semester	6.1	8.6	-2.5	1.0	0.015	6.1	8.2	-2.1	1.2	0.068
4 semester	6.2	8.7	-2.5	1.0	0.015	6.2	8.2	-2.1	1.2	0.075

Possible reductions in college enrollment rates appears to have been driven by reductions in enrollment in four-year colleges and universities. With the contemporaneous comparison, we estimated that course participation resulted in a significant decrease in four-year college enrollment rates throughout the four semesters after graduation. For the previous year comparison, we estimated a non-significant and small reduction in enrollment throughout the four semesters. For both comparisons, enrollment rates in private four-year colleges and universities were near zero (2.3% or less) and differences between TCM and comparison groups were not statistically distinguishable from zero.

For the contemporaneous comparison, the effect of participating in TCMC on enrollment in community colleges was positive but small and not statistically distinguishable from zero. However, for the previous year comparison, the effect was small and non-significant in the first semester but larger, positive, and statistically distinguishable from zero in the second, third and fourth semesters after graduation. Similarly, the effect of taking the course on enrollment in partner community colleges was very small and non-significant except for second and third semester enrollment for the previous year comparison.

Taking TCMC may have reduced college-level math enrollment rates. For the contemporaneous and previous-year comparisons, the reductions become larger in the second, third and fourth semesters. The reductions are lower in magnitude for the previous-year comparison. The pattern of the effect of TCMC on enrollment rates in developmental math classes is similar except the reductions were smaller in magnitude and not statistically distinguishable from zero. Taking TCMC also reduced math passage rates. The reductions are larger in the second, third and fourth semesters and the magnitude of reductions are larger for college-level math passage rates compared to developmental math passage rates.

Discussion

To evaluate the effects of taking TCMC, we have compared the outcomes of students enrolled in the course during the 2016-17 school year to outcomes of two distinct groups of observationally similar students. Relative to observationally similar students who did not participate in the course, we found that students who took TCMC graduated from high school at slightly higher rates but had lower rates of enrollment in post-secondary education, driven by lower rates of enrollment in 4-year colleges or universities. Further, we found that students who took TCMC were less likely to pass college-level and developmental math courses. The negative effects were generally larger in magnitude for the contemporaneous comparison than for the previous year comparison and the effects tended to be more positive for the previous year comparison. For the college enrollment results, the magnitude of the negative effects tended to become lower for longer term cumulative outcomes and the magnitude of the positive effects tended to become higher especially for the second and third semester after graduation. For the math passage rates, the magnitude of the negative effects tended to become higher for second, third, and fourth semesters after graduation.

These findings raise the possibility that placement and participation in TCMC may lead to some unanticipated effects on student trajectories, discouraging some students from pursuing post-secondary education at four-year institutions. The magnitude of these effects is small in absolute terms, yet the overall fraction of students who enter four-year colleges and universities immediately after high school is also small (17.6% of students in the contemporaneous comparison group, 15.5% of students in the previous year comparison group). Given that the focus of the TCM course is to prepare students for post-secondary math with a community college partner, and that the intended outcome of the course is eligibility for college-level math at the partner community college, we would not have anticipated effects on enrollment in four-year colleges. We must, however, be cautious in interpreting the observed differences in enrollment as causal impacts of the program.

We think the most plausible explanation for these observed differences is bias stemming from our inability to fully adjust for initial differences in college readiness, as well as other potential confounders such as college aspirations, at the start of students' senior year. Notably, the magnitude of the estimated effect on four-year college enrollment based on the previous-year comparison is only half the size of the effect estimated from the contemporaneous comparison. If the contemporaneous comparison is more likely than the previous year comparison to be subject to problems of omitted confounders, the sensitivity of the effect estimate across the two comparison groups suggests that there may be remaining bias at work.

Apart from bias, an alternative explanation for this pattern of findings is that participating in the course may have led students to become more informed about the challenges of remediation, potentially increasing the salience of attaining college readiness. If participation in the course raises students' awareness of the developmental education system—and the hurdles it presents to completing college-level courses—this could have the effect of dampening students' aspirations and discouraging some from pursuing college. A further possibility is that the course increased students' awareness of partner community colleges as the main pathway available to them for pursuing post-secondary education. These possibilities could be probed further in several ways. One is by further examining the information and processes that participating school used to advise students about senior year math courses. A second is by examining variation in the effects of the course across the schools where it is implemented, to determine whether advising practices, aspects of the agreements between high schools and community college partners, or other features moderate the effects of participating in TCM. A third route, which could let us better adjudicate between the alternative explanations that we have described, is to examine rates of student application and acceptance into four-year colleges. We intend to pursue several of these directions in follow-up work.

We must emphasize that there are several important limitations to interpreting these

findings as evidence of the causal effects of TCMC. A first, critical limitation of our propensity model and outcome analysis is that we were unable to fully account for students' college readiness status as of the start of their senior year. Schools determine college readiness based on one or more of several possible pieces of data, including performance on end-of-course exams, SAT or ACT scores, and performance on the Texas Success Initiative Assessment (TSIA). We have controlled for Algebra I end-of-course STAAR scores as well as detailed course-taking patterns through students' junior year of high school, but we were unable to access SAT, ACT, or TSIA scores for the study sample. As a result, it may be that some students in the comparison groups had already achieved college-readiness status by the start of their senior year, and this status may in turn have increased the likelihood that they pursue post-secondary education, including post-secondary math coursework.

Across outcomes, estimated effects tended to be smaller in magnitude in the previous year comparison than in the contemporaneous comparison. This pattern of estimates is consistent with the possibility that college-readiness status may be confounding the effect estimates. Relative to the contemporaneous comparison groups, we would expect that a smaller proportion of students in the previous year comparison group would have attained college readiness status by the start of their senior year. Thus, college readiness may be a weaker confounder in the previous year comparison group, leading to relatively smaller impact estimates.

A second limitation is that, because our analysis is limited to administrative data from TEA and THECB, we were unable to assess fidelity of implementation in the high schools where TCMC was offered. If fidelity was low, then the small impact estimates that we observed here might have less to do with the TCMC curriculum than with the training, resources, advising processes, and implementation strategy used in the initial year of the program. A further limitation is that all of the participating schools were implementing the curriculum for the first time. Effective instruction using novel curricular materials might require sustained use over more than a single year.

Finally, our analysis was limited to estimating the effects of taking TCMC for the set of students who enrolled in the course during the 2016-17 school year, who were drawn from 17 schools in 8 districts. We have not sought to generalize our findings beyond this sample, nor have we examined variability in the effects across participating schools. During the 2016-17 school year, TCMC did not count towards graduation requirements, which likely affected how schools advised students about taking the course. For the 2017-18 school year, TCMC and other college preparatory math courses became credit-bearing courses that counted towards state graduation requirements. Consequently, cohorts of students who enrolled in TCMC during 2017-18 (and future cohorts) might differ from the sample that we have examined, and the effect of the program for these cohorts might differ from the effect of the program on the sample we have examined.

In on-going work, we plan to examine the effects of taking TCMC for an expanded cohort of students, who enrolled in the course during the 2017-18 school year. This further evaluation will allow us to address several of the limitations of our initial findings. The new cohort will include students from thirty or more districts, including 13 schools from 7 districts who offered TCMC for a second year. The sample will thus allow us to assess whether effects change as teachers learn to use the curriculum. Furthermore, the expanded 2017-18 cohort will provide a better basis for assessing variability in the effects of TCMC across participating schools. As these further data become available, we will be able to provide a more complete picture of the effects of TCMC for students who enrolled in the course.

References

- An, B. P. (2013). The Impact of Dual Enrollment on College Degree Attainment: Do Low-SES Students Benefit? *Educational Evaluation and Policy Analysis*, 35(1), 57–75. https://doi.org/10.3102/0162373712461933
- Attewell, P. A., Lavin, D. E., Domina, T., & Levey, T. (2006). New Evidence on College Remediation. The Journal of Higher Education, 77(5), 886–924. https://doi.org/10.1353/jhe.2006.0037
- Bailey, T. R., Jeong, D. W., & Cho, S. W. (2010). Referral, enrollment, and completion in developmental education sequences in community colleges. *Economics of Education Review*, 29(2), 255–270. https://doi.org/10.1016/j.econedurev.2009.09.002
- Calcagno, J. C., & Long, B. T. (2008). The Impact of Postsecondary Remediation Using a Regression Discontinuity Approach: Addressing Endogenous Sorting and Noncompliance. https://doi.org/10.3386/w14194
- Charles A. Dana Center. (2016). The case for Mathematics Pathways. Austin, TX: University of Texas at Austin. Retrieved from https://dcmathpathways.org/resources/case-mathematics-pathways
- Chen, X. (2016). Remedial Coursetaking at U.S. Public 2- and 4- Year Institutions: Scope, Experiences, and Outcomes (NCES 2016-405) (National Center for Education Statistics.). Washington, DC: U.S. Department of Education.
- Couturier, L. K., & Cullinane, J. (2015). A call to action to improve math placement policies and processes (p. 22). Boston, MA: Jobs for the Future.
- Giani, M., Alexander, C., & Reyes, P. (2014). Exploring Variation in the Impact of Dual-Credit Coursework on Postsecondary Outcomes : A Quasi-Experimental Analysis of Texas Students. *The High School Journal*, 97(4), 200–218. https://doi.org/10.1353/hsj.2014.0007
- Hirano, K., & Imbens, G. W. (2001). Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization. *Health Services*

and Outcomes Research Methodology, 2(3-4), 259–278. https://doi.org/10.1023/A:1020371312283

- Hodara, M., Jaggars, S., & Karp, M. (2012). Improving developmental education assessment and placement: Lessons from community colleges across the country. *Community College Journal of Research & Practice*, 1–44.
- Karp, M. M., Calcagno, J. C., Hughes, K. L., Jeong, D. W., & Bailey, T. R. (2007). An Analysis of Student Outcomes in Two States, 1–2.
- Lee, B. K., Lessler, J., & Stuart, E. A. (2009). Improving propensity score weighting using machine learning. *Statistics in Medicine*, n/a–n/a. https://doi.org/10.1002/sim.3782
- Levin, H. M., & Calcagno, J. C. (2008). Remediation in the Community College: An Evaluator's Perspective. Community College Review, 35(3), 181–207. https://doi.org/10.1177/0091552107310118
- Logue, A. W., Watanabe-Rose, M., & Douglas, D. (2016). Should Students Assessed as Needing Remedial Mathematics Take College-Level Quantitative Courses Instead?
 A Randomized Controlled Trial. *Educational Evaluation and Policy Analysis*, 38(3), 578–598. https://doi.org/10.3102/0162373716649056
- Martorell, P., & McFarlin, I. (2011). Help or Hindrance? The Effects of College Remediation on Academic and Labor Market Outcomes. *Review of Economics and Statistics*, 93(2), 436–454. https://doi.org/10.1162/REST a 00098
- McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. *Psychological Methods*, 9(4), 403–425. https://doi.org/10.1037/1082-989X.9.4.403
- Michelmore, K., & Dynarski, S. (2017). The gap within the gap: Using longitudinal data to understand income differences in educational outcomes. AERA Open, 3(1), 1–18. https://doi.org/10.1177/2332858417692958

R Core Team. (2016). R: A language and environment for statistical computing. Vienna,

Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/

- Ridgeway, G., McCaffrey, D., Morral, A., Griffin, B. A., & Burgette, L. (2016). Twang: Toolkit for weighting and analysis of nonequivalent groups. Retrieved from https://CRAN.R-project.org/package=twang
- Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70(1), 41–55.
- Rosenbaum, P. R., & Rubin, D. B. (1984). Reducing bias in observational studies using subclassification on the propensity score. *Journal of the American Statistical Association*, 79(387), 516–524.
- Ruschow, E. Z., Diamond, J., & Serna-Wallender, E. (2015). Laying the Foundations Early Findings from the New Mathways Project.
- Schafer, J. L., & Kang, J. (2008). Average causal effects from nonrandomized studies: A practical guide and simulated example. *Psychological Methods*, 13(4), 279–313. https://doi.org/10.1037/a0014268
- Scott-Clayton, J., & Rodriguez, O. (2015). Development, discouragement, or diversion? New evidence on the effects of college remediation policy. *Education Finance and Policy*, 10(1), 4–45. https://doi.org/10.1162/EDFP_a_00150
- Stuart, E. A. (2008). Developing practical recommendations for the use of propensity scores: Discussion of "A critical appraisal of propensity score matching in the medical literature between 1996 and 2003" by Peter Austin, Statistics in Medicine. *Statistics in Medicine*, 27(12), 2062–2065. https://doi.org/10.1002/sim.3207
- Xu, D. (2016). Assistance or obstacle? The impact of different levels of English developmental education on underprepared students in community colleges. *Educational Researcher*, 45(9). https://doi.org/10.3102/0013189X16683401
- Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. *Journal of Statistical Software*, 11(10), 1–17.

Appendix

Table 10Percentage of students in the TCMC course who passed

Campus	Ν	Semester	Passage Rate
Overall	1024	1	93%
Overall	950	2	95%
ALDINE H S	154	1	>=98%
ALDINE H S	150	2	97%
CARVER H S FOR APPLIED TECH/ENGINE	13	1	77%
CARVER H S FOR APPLIED TECH/ENGINE	13	2	>=90%
CEDAR PARK H S	44	1	86%
CEDAR PARK H S	44	2	95%
DAVIS H S ALDINE	79	1	90%
DAVIS H S ALDINE	100	2	87%
DEL VALLE H S	19	1	79%
DEL VALLE H S	17	2	>=93%
EAST VIEW H S	38	1	84%
EAST VIEW H S	27	2	>=96%
EISENHOWER H S	116	1	>=98%
EISENHOWER H S	112	2	>=98%
HALL CENTER FOR EDUCATION	7	1	*
LAGO VISTA H S	36	1	>=97%
LAGO VISTA H S	32	2	97%
LEANDER H S	54	1	94%
LEANDER H S	41	2	93%
LIBERTY H S	16	1	81%
LIBERTY H S	15	2	87%
LIBERTY HILL H S	38	1	>=97%
LIBERTY HILL H S	37	2	>=97%
LOCKHART H S	14	1	>=90%
LOCKHART H S	11	2	82%
MACARTHUR H S	207	1	89%
MACARTHUR H S	161	2	95%
NIMITZ H S	97	1	94%
NIMITZ H S	98	2	96%
ROUSE H S	54	1	96%
ROUSE H S	53	2	94%
VISTA RIDGE H S	38	1	95%
VISTA RIDGE H S	39	2	79%