
• Divide session into K intervals, each of length L.  

• For each interval, observer records whether behavior occurred for the 

duration of the interval. 

 

• Recorded data are 

 

• Whole interval recording is equivalent to partial interval recording applied 

to the absence of a behavior rather than its presennce. 

• The model for PIR data described above can therefore be used for either 

interval recording method, with appropriate interpretation of parameters. 
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Abstract 
Data based on direct observation of behavior are used extensively in 

certain areas of educational and psychological research. A number of 

different procedures are used to record data during direct observation, 

including continuous recording, momentary time sampling (MTS), and 

partial interval recording (PIR). Among these, PIR has long been 

recognized as problematic because the mean of such data measures 

neither the prevalence nor the incidence of a behavior. However, little 

research has examined methods of analyzing PIR data other than simply 

summarizing it by the mean. I show that data collected using PIR can be 

represented using a discrete-time Markov chain derived from an 

alternating Poisson process model, which permits estimation of both 

prevalence and incidence via likelihood methods. Furthermore, I show 

that combining interval recording procedures with MTS considerably 

simplifies the Markov chain representation and leads to more precise 

estimates. Further work will study the operating characteristics of 

maximum likelihood estimators based on PIR data and on combined data, 

and will address questions of model fit for the underlying alternating 

Poisson process. 
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Background 
 

• Direct observation of behavior is used extensively in certain areas of 

education and psychological research. 

 

• Aspects of behavior that are often of interest include: 

• Prevalence: the proportion of time that a behavior occurs; 

• Incidence: the rate at which behavioral events occur. 

•  

Procedures for recording observations vary in ease of implementation and 

level of detail. 

• Continuous recording methods are effort-intensive but produce rich 

data. 

• Less demanding methods are often required in applied settings. 

• Partial interval recording (PIR) is common but controversial because it 

does not directly measure prevalence or incidence (Kraemer, 1979; 

Rogosa & Ghandour, 1991). 

•  

The relative merits of different methods remain open to debate, partly due 

to a lack of statistical work. 

 

Goals 
 

• Develop likelihood-based methods for estimating prevalence and incidence 

from PIR data. 

• Develop new observation procedures that yield better estimates of these 

parameters.  

• Provide guidance about appropriate circumstances for applying different 

observation procedures. 
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Latent Alternating Poisson Process Model 
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Following Rogosa & Ghandour (1991), I use a model for the latent “behavior 

stream,” from which the recorded data are derived. Over an observation of 

length T, assume that the behavior stream follows an alternating Poisson 

process where: 

 

1. Event durations D1, D2, D3… are independent and exponentially 

distributed with mean E(D1) = μ; 

2. Inter-event times E0, E1, E2, E3… are independent and exponentially 

distributed with mean E(E1) = λ; 

3. Event durations and inter-event times are mutually independent;  

4. The process is in equilibrium. 

 

Under this model, 

• ϕ = μ / (μ + λ) is the prevalence of the behavior and 

• ζ = 1 / (μ + λ) is the incidence of the behavior. 

 

Let Y(t) denote the state of the process at time t. Finally, define the transition 

probabilities: 
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• Observer records the presence or absence of a behavior at each of (K + 1) 

moments in time, equally spaced at intervals of length L.  

• Recorded data are Xk = Y(kL), k = 0,…,K. 
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• Brown, Solomon, & Stephens (1977) demonstrate that, under an alternating 

Poisson process, MTS data follow a two-state discrete time Markov chain 

with transition probabilities 

 

 Pr(Xk = 1 | Xk-1 = a) = pa(L) and Pr(Xk = 0 | Xk-1 = a) = 1 - pa(L) 

 

• Closed-form expressions for the maximum likelihood estimators of ϕ and γ 

are available (Brown, et al., 1977; Griffin & Adams, 1983). 

 

• Divide session into K intervals, each of length L.  

• For each interval, observer records whether behavior occurred at any point 

during the interval. 

• Recorded data are 

 

 

 

 

 

 

 

 

 

• Let V0 = 0 and let Vk be the number of consecutive intervals where behavior 

is present: 

 

• V1,V2, …,VK form a discrete-time Markov chain on the space {0,1,2,3,…} 

with transition probabilities 
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and f(j) denotes the j-fold recursion of f. 
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Whole interval recording (WIR) 
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• MTS, PIR, and WIR can be combined as follows. 

• Divide session into K/2 intervals, each of length 2L.  

• Use MTS at the beginning of each interval, to record Xk-1. 

• If Xk-1 = 0, use PIR for the remainder of the interval. 

• If Xk-1 = 1, use WIR for the remainder of the interval. 

• Recorded data are Zk = Xk + Uk + Wk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Conditional on X0, (Z1,…,ZK/2) form a discrete-time Markov chain on the 

space {0,1,2,3}, with transition probabilities πab= Pr(Zk = b | Xk-1 = a) for 
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• For a recording procedure following a DTMC on an (R+1)-dimensional 

space, the expected information from K observations has (i,j)th entry 

 

 

 

 

where θ = (ϕ,ζ)T and       is the limiting occupancy probability in state q. 

 

• For parameter θi, the asymptotic relative efficiency of the procedures is 

calculated as 

 

• AIR versus MTS: 

 

• AIR versus PIR: 

 

• PIR versus MTS: 

 

• The relative efficiency of the procedures is plotted in the figure to the left 

for various values of prevalence and incidence. 

• Over most of the parameter space, AIR dominates PIR for both prevalence 

and incidence.  
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