Some Markov models for direct observation of behavior

James E. Pustejovsky Northwestern University

May 29, 2013

Direct observation of behavior

- Quantities of interest
 - **Prevalence**: proportion of time that a behavior occurs
 - Incidence: rate at which new behavioral events begin
 - Intensity, contingency, others
- Applications in psychology and education research
 - Measurement of teaching practice
 - Measurement of student behavior
 - Evaluating interventions for individuals with disabilities
 - Other examples in animal behavior, organizational psychology, social work, exercise physiology

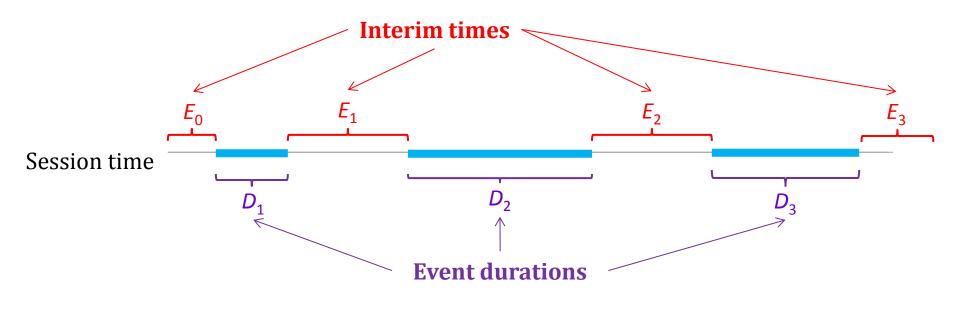
Observation recording methods

- How to turn direct observation of a "behavior stream" into data?
- Continuous recording methods
 - Produce rich data, amenable to sophisticated modeling
 - Effort-intensive
- Discontinuous recording methods
 - Less demanding methods needed in field settings
 - Momentary time sampling
 - Interval recording
 - Other possibilities?

Outline

- Model for behavior stream as observed
- Momentary time sampling
- Interval recording
- Some novel proposals
- Efficiency considerations

A model for the behavior stream



 $Y(t) = \begin{cases} 0 \text{ behavior is not occurring at time } t \\ 1 \text{ behavior is occurring at time } t \end{cases}$

Alternating Poisson Process

Assumptions

- 1. Event durations: $D_j \sim \text{Exp}(1/\mu), \quad j = 1, 2, 3, ...$
- 2. Interim times: $E_j \sim \text{Exp}(1/\lambda), \quad j = 1, 2, 3, ...$
- 3. Event durations and interim times are all mutually independent.
- 4. Process is in equilibrium.

Under this model:

- Prevalence $\phi = \mu / (\mu + \lambda)$
- Incidence $\zeta = 1 / (\mu + \lambda)$

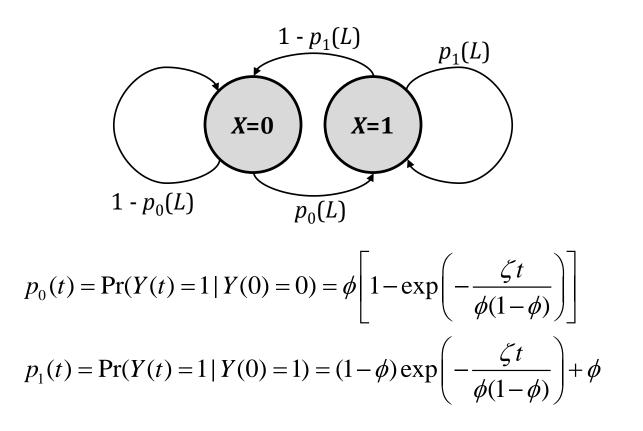
Momentary time sampling (MTS)

- (*K* + 1) moments, equally spaced at intervals of length *L*.
- Observer records the presence or absence of a behavior at each moment
- Recorded data are

$$X_k = Y(kL), \quad k = 0, \dots, K$$

Model for MTS data

Under the alternating Poisson process, X₁,...,X_K follow a discrete-time Markov chain (DTMC) with two states (see e.g., Kulkarni, 2010).



MTS model, continued

- Maximum likelihood estimators of ϕ and ζ have closed form expressions (Brown, Solomon, & Stephens, 1975).
- But $E(\overline{X}) = \phi$ under more general models.
- Extensive literature, lots of generalizations
 - stopping rules for observation time (Brown, Solomon, & Stephens, 1977, 1979; Griffin & Adams, 1983)
 - Irregular observation times (e.g., Cook, 1999)
 - Random effects to describe variation across subjects (e.g., Cook et al., 1999)

Partial interval recording (PIR)

- Divide period into *K* intervals, each of length *L*.
- For each interval, observer records whether behavior occurred *at any point* during the interval.
- Recorded data are

$$U_{k} = I \left[0 < \int_{[0,L)} Y((k-1)L+t) dt \right], \quad k = 1, \dots, K.$$

Session time
$$U_{1} = 1 \quad U_{2} = 1 \quad U_{3} = 0 \quad U_{4} = 1 \quad U_{5} = 1 \quad U_{6} = 1 \quad U_{7} = 1 \quad U_{8} = 1$$

PIR, continued

• Unlike MTS, the mean of PIR data is not readily interpretable:

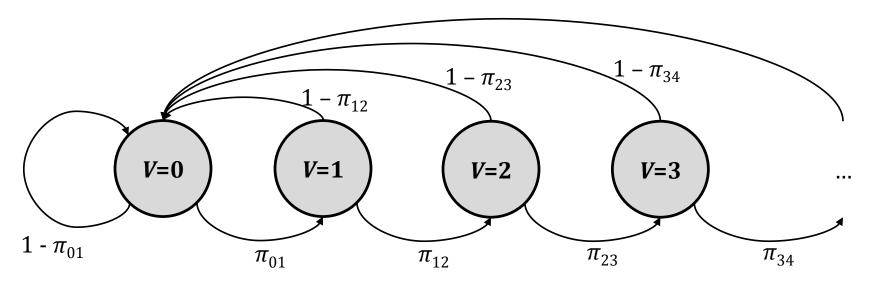
$$E\left(\overline{U}\right) = \phi + (1 - \phi) \left[1 - \exp\left(\frac{-\zeta L}{1 - \phi}\right)\right]$$

Model for PIR data

 Define V_k as the number of consecutive intervals where behavior is present:

$$V_k = k - \max \{ 0 \le j \le k : U_j = 0 \}.$$

• Under the alternating Poisson process, $V_1, ..., V_K$ follow a DTMC on the space {0,1,2,3,...}.



Whole interval recording (WIR)

- Divide period into *K* intervals, each of length *L*.
- For each interval, observer records whether behavior occurred *for the duration* of the interval.
- Recorded data are

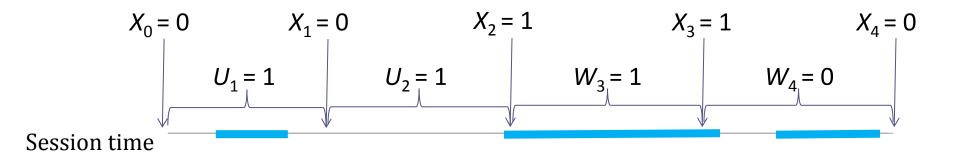
$$W_{k} = I\left[L = \int_{[0,L)} Y\left(\left(k-1\right)L + t\right)dt\right], \quad k = 1, \dots, K.$$

Session time
$$W_1 = 0 \ W_2 = 0 \ W_3 = 0 \ W_4 = 0 \ W_5 = 1 \ W_6 = 1 \ W_7 = 0 \ W_8 = 0$$

• Equivalent to PIR for absence of event.

Augmented interval recording (AIR)

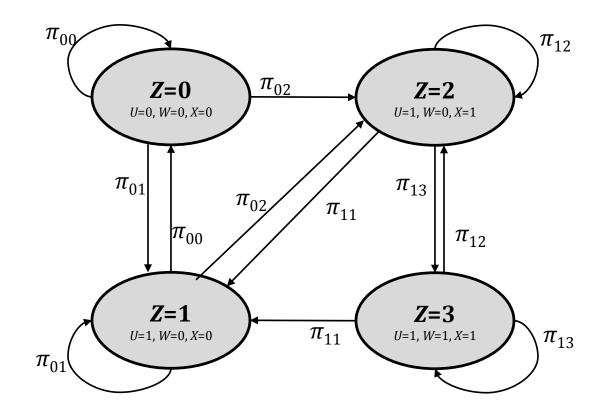
- Divide period into *K*/2 intervals, each of length 2*L*.
- Use MTS at the beginning of each interval, to record X_{k-1} .
- If $X_{k-1} = 0$, use PIR for the remainder of the interval.
- If $X_{k-1} = 1$, use WIR for the remainder of the interval.



15

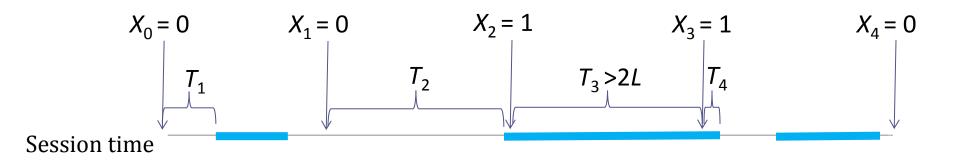
Model for AIR data

- Define $Z_k = U_k + W_k + X_k$.
- Under the alternating Poisson process, $Z_1, ..., Z_{K/2}$ follow a DTMC on {0,1,2,3}, with transition probabilities π_{ab} = Pr(Z_k = $b \mid X_{k-1}$ = a)



Intermittent transition recording (ITR)

- Divide period into *K*/*2* intervals, each of length 2*L*.
- Use MTS at the beginning of each interval, to record X_{k-1} .
- Record time until next transition as T_k .

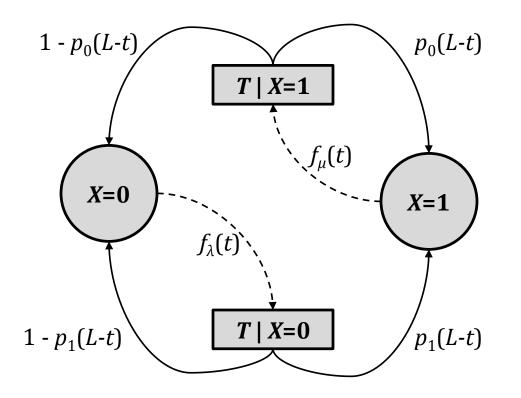


17

Model for ITR data

• Under the alternating Poisson process, $T_1, X_1, ..., T_{K/2}, X_{K/2}$ have the property that

$$F(T_k, X_k | T_1, X_1, \dots, T_{k-1}, X_{k-1}) = F(T_k, X_k | X_{k-1})$$

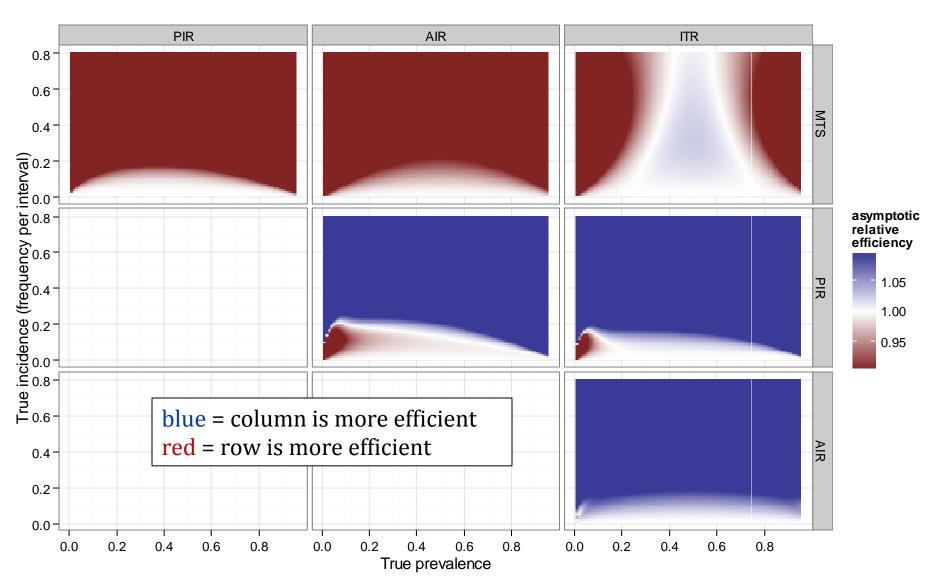


Asymptotic relative efficiency

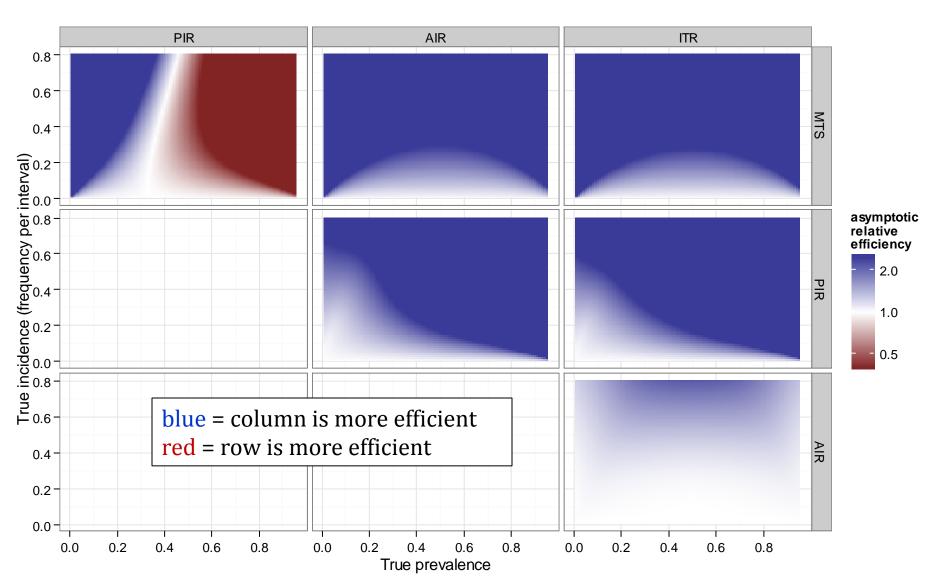
- Procedure $p, q \in \{MTS, PIR, AIR, ITR\}$
- $\hat{\phi}_p, \hat{\zeta}_p$ are maximum likelihood estimators based on procedure *p*
- $V(\hat{\phi}_p), V(\hat{\zeta}_p)$ are asymptotic variances based on inverse of expected information matrix.
- Asymptotic relative efficiency of p versus q

$$\operatorname{ARE}\left(\hat{\phi}_{p},\hat{\phi}_{q}\right) = \frac{\operatorname{V}\left(\hat{\phi}_{q}\right)}{\operatorname{V}\left(\hat{\phi}_{p}\right)} \qquad \operatorname{ARE}\left(\hat{\zeta}_{p},\hat{\zeta}_{q}\right) = \frac{\operatorname{V}\left(\hat{\zeta}_{q}\right)}{\operatorname{V}\left(\hat{\zeta}_{p}\right)}$$

Asymptotic relative efficiency: Prevalence



Asymptotic relative efficiency: Incidence



Future work

- Evaluating these models & methods
 - Field testing
 - When is it okay to treat ML estimates from individual sessions as "pre-processing"?

- Lots still to do
 - Build data-collection software
 - Extensions to between-period regression models
 - Random period/subject effects
 - PIR, AIR, ITR under other distributional assumptions?

Questions? Comments?

pusto@u.northwestern.edu

PIR model

• Transition probabilities are uglier than MTS:

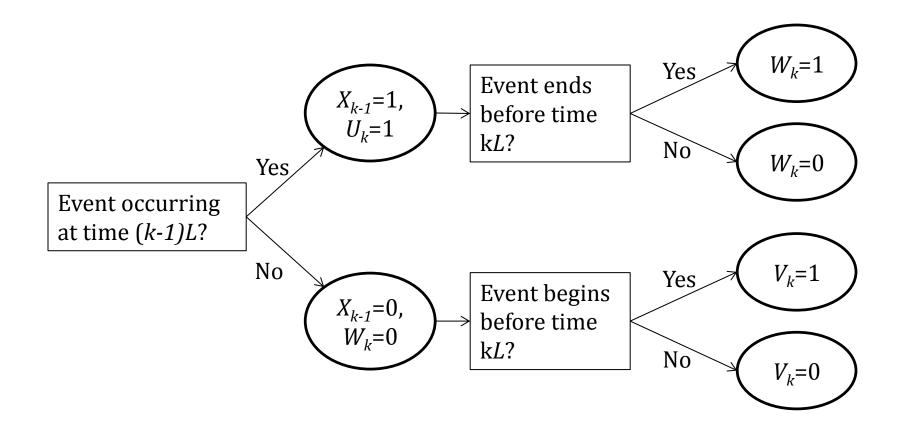
$$\pi_{j,j+1} = \Pr(V_k = j+1 | V_{k-1} = j) = 1 - e^{-L/\lambda} \left[1 - f^{(j)}(0) \right]$$

where

$$f(q) = \frac{\phi - (\phi - q)e^{-L\zeta/[\phi(1-\phi)]}}{1 - (1-q)e^{-L\zeta/(1-\phi)}}$$

and $f^{(j)}$ is the *j*-fold recursion of *f*.

AIR, continued



<u>Extras</u>

AIR model

• Transition probabilities are given by

$$\begin{aligned} \pi_{00} &= e^{-2L/\lambda} & \pi_{02} &= p_0(2L) \\ \pi_{10} &= 0 & \pi_{12} &= 1 - e^{-2L/\lambda} - \frac{\lambda}{\mu} p_0(2L) \\ \pi_{01} &= 1 - e^{-2L/\lambda} - p_0(2L) & \pi_{03} &= 0 \\ \pi_{11} &= \frac{\lambda}{\mu} p_0(2L) & \pi_{13} &= e^{-2L/\lambda} \end{aligned}$$

26

ITR model

• Under alternating Poisson process,

$$f(t_{1}, x_{1}, ..., t_{K/2}, x_{K/2} | x_{0})$$

= $\prod_{k=1}^{K/2} f(t_{k} | x_{k-1}; \mu, \lambda) f(x_{k} | t_{k}, x_{k-1}; \mu, \lambda)$