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Percentage of Intervals

Single Case Designs

Dunlap, et al. (1994). Choice making to promote adaptive behavior for students
with emotional and behavioral challenges.
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Meta-analysis of single-case research

- Summarizing results from multiple cases, studies
- Means for identifying evidence-based practices

- Many proposed effect size metrics for single-case designs
(Beretvas & Chung, 2008)

- Computational formulas, without reference to models

- Mostly focused on standardized mean differences
(exceptions: Shadish, Kyse, & Rindskopf, 2012; Sullivan & Shadish, 2013)



RN
Shogren, et al. (2004)

The effect of choice-making as an intervention for problem behavior
- Meta-analysis containing 13 single-case studies
- 32 unique cases

Measurement procedure # Cases

Event counting 3
Continuous recording 5
Partial interval recording 19

Other 5



Operationally comparable effect sizes

- Separate the definition of effect size metric from the
operational details about outcome measurements.

- Parametrically defined
- Within-session measurement model
- Between-session model
- Effect size estimand



A within-session model for behavior

Session time 0

/ Inter-event times \L

Event durations

Alternating Renewal Process (Rogosa & Ghandour, 1991)

1.
2.

Event durations are identically distributed, with average duration u > 0.

Inter-event times (IETs) are identically distributed,
with average IET A > 0.

Event durations and IETs are all mutually independent.
Process is in equilibrium.



Observation recording procedures

1
Event counting Incidence
u+A
: . H
Continuous recording Prevalence
u+A
Partial.interval Neithe.r pI?evalence nor I i PI’( IET > X)dX
recording incidence H 0
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Between-session model

- Baseline phase(s):
- Independent observations
- Stable ARP from session to session

Y, - Procedure[ARP 7 )]

- Treatment phase(s):
- Independent observations
- Stable ARP from session to session

Y, ~ Procedure| ARP (&, A;) |



The prevalence ratio

 The prevalence ratio:
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- Why?
- Prevalence is often most practically relevant dimension.
- Ratio captures how single-case researchers talk about their results.
- Empirical fit.

- Confidence intervals, meta-analysis on natural log scale.
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Estimating the prevalence ratio

- Continuous recording
- Response ratios (Hedges, Gurevitch, & Curtis, 1998)
- Generalized linear models

- Event counting

- Incidence ratio equal to prevalence ratio if average event duration does
not change (ug = ur)

- Partial interval data

 Need to invoke additional, rather strong assumptions
even to get bounds on prevalence ratio

- For example: Assuming y8, u” > u .. for known u, .. implies a bound on
the prevalence ratio.



Conclusion

- Limit scope to a specific class of outcomes
(directly observed behavior).

« Use a model to

« Address comparability of different outcome measurement
procedures.

- Separate effect size definition from estimation procedures.

- Emphasize assumptions that justify estimation strategy.

- Still need to address comparability with effect sizes from

between-subjects designs
(Shadish, Hedges, & Rindskopf, 2008; Hedges, Pustejovsky, & Shadish, 2012)
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Single-case designs

- Repeated measurements, often via direct observation of
behaviors

- Comparison of outcomes pre/post introduction of a
treatment

- Replication across a small sample of cases.



Partial interval recording

Session time

1. Divide session into K short intervals, each of length P.
2. During each interval, note whether behavior occurs at all.
3. Calculate proportion of intervals where behavior occurs:

Y = (# Intervals with behavior) / K.



Possible effect sizes for free-operant behavior

T
i = Duration Ratio
ya;
T
A S Inter-Event Time Ratio
A
ILI B 4+ ﬂ, B
T 47T Incidence Ratio
ya;

Prevalence Ratio

T T
y 24 / A Prevalence Odds Ratio




Outcomes in single-case research

% of Studies

Free-operant behavior 56
Restricted-operant behavior 41
Academic 8
Physiological /psychological 6
Other 3

N = 122 single-case studies published in 2008, as identified by Shadish & Sullivan (2011).

- Restricted-operant behavior occurs in response to a specific
stimulus, often controlled by the investigator.

- Free-operant behavior can occur at any time, without prompting
or restriction by the investigator (e.g., physical aggression, motor
stereotypy, smiling, slouching).



Measurement procedures
for free-operant behavior

Recording procedure % of Studies

Event counting 60
Interval recording 19
Continuous recording 10
Momentary time sampling 7
Other 16

N = 68 single-case studies measuring free-operant behavior, a subset of all 122 studies published in 2008, as identified by Shadish & Sullivan
(2011). Characteristics of single-case designs used to assess intervention effects in 2008. Behavior Research Methods, 43(4), 971-80.



Effect size estimation: Continuous recording

- A basic moment estimator:
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- Its approximate variance:
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Partial interval data: Analysis strategies
« Strategy 1:

- Assume that y8, u" > pu,... forknownpy,. .
- Estimate bounds on the true prevalence ratio.

« Strategy 2:
- Assume that u=u’
- Assume that inter-event times are exponentially distributed.
- Estimate bounds on true prevalence ratio (“sensitivity analysis”).

- Strategy 3:
- Follow strategy 2, but for known " = uf=u’.
- This leads to a point estimate for the prevalence ratio.
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Partial interval data: Strategy 1

- Pick a value u,,.. where you are certain that u?, u">u_ . .
« Then, under ARP,

Q- <<

where

QLEE(YT)XL Hiin j QUEE(YT)X(Iumin_I_Pj
E(YB) lumin+P E(YB) :umin

Y? outcome in baseline phase

YT outcome in treatment phase




Partial interval data: Strategy 1 (cont.)

- Estimate the bounds with sample means.

QL _ ﬁx Hin QU — YT Hinin T P
yB :umin +P yB :umin

V. sample mean in baseline phase, V.. sample mean in treatment phase
Vg samp p Yy samp

- With approximate variance (on log-scale)

Var(logf)L):Var(logflu)z S 7 T Sé 2
n (%) e (Vs)

Sé sample variance in baseline phase, ST2 sample variance in treatment phase

ng observations in baseline phase, n; observations in treatment phase



Partial interval data: Strategy 2

- Assume that IETs are exponentially distributed.

- Assume that uf = u”.
- IfE(Y")<E(Y8) then ®" < w < @"
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- Estimate the bounds with sample means.
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Partial interval data: Strategy 3

Assumptions:

1. IETs are exponentially distributed.

2. Average duration is constant across phases: u?= u’.
3. Assume that u#=u” = u’, for some known .



Partial interval data: Strategy 3 (cont.)
- Find estimates for A’ and A" by solving
ool A% (w4 2Y) gy =1- e (A
- Estimate () with
u ! (,u* + AT )
u ! (,u* + A8 )
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Dunlap, et al. (1994): Strategy 1

Choice making to promote adaptive behavior for students with emotional and
behavioral challenges.
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Dunlap, et al. (1994): Strategy 2

Choice making to promote adaptive behavior for students with emotional and

behavioral challenges.
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Shogren (2004) meta-analysis

The effect of choice-making as an intervention for problem behavior.
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