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Dunlap, et al. (1994). Choice making to promote adaptive behavior for students 
with emotional and behavioral challenges. 
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Meta-analysis of single-case research 

• Summarizing results from multiple cases, studies 

• Means for identifying evidence-based practices 

 

• Many proposed effect size metrics for single-case designs 
(Beretvas & Chung, 2008) 

• Computational formulas, without reference to models 

• Mostly focused on standardized mean differences 
(exceptions: Shadish, Kyse, & Rindskopf, 2012; Sullivan & Shadish, 2013) 
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Shogren, et al. (2004)  

Measurement procedure # Cases 

Event counting 3 

Continuous recording 5 

Partial interval recording 19 

Other 5 
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The effect of choice-making as an intervention for problem behavior 

• Meta-analysis containing 13 single-case studies 

• 32 unique cases 



Operationally comparable effect sizes 

• Separate the definition of effect size metric from  the 
operational details about outcome measurements. 

• Parametrically defined 
• Within-session measurement model 

• Between-session model 

• Effect size estimand 
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Alternating Renewal Process (Rogosa & Ghandour, 1991) 

1. Event durations are identically distributed, with average duration μ > 0. 

2. Inter-event times (IETs) are identically distributed,  
with average IET λ > 0. 

3. Event durations and IETs are all mutually independent. 

4. Process is in equilibrium. 

A within-session model for behavior 
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Session time 0 L 

Inter-event times 

Event durations 



Observation recording procedures 
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Procedure Measured quantity 
Expectation  
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Between-session model 
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• Baseline phase(s): 
• Independent observations 

• Stable ARP from session to session 
 

 

 

• Treatment phase(s):  
• Independent observations 

• Stable ARP from session to session 

 ~ Procedur ,ej B BY ARP    

 ~ Procedur ,ej T TY ARP    



The prevalence ratio 
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• The prevalence ratio: 

 

 
 

• Why? 

• Prevalence is often most practically relevant dimension. 

• Ratio captures how single-case researchers talk about their results. 

• Empirical fit. 

 

• Confidence intervals, meta-analysis on natural log scale. 
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Estimating the prevalence ratio 
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• Continuous recording 
• Response ratios (Hedges, Gurevitch, & Curtis, 1998) 

• Generalized linear models 
 

• Event counting 
• Incidence ratio equal to prevalence ratio if average event duration does 

not change (μB = μT) 
 

• Partial interval data 
• Need to invoke additional, rather strong assumptions 

even to get bounds on prevalence ratio 

• For example: Assuming μB , μT > μmin for known μmin implies a bound on 
the prevalence ratio. 



Conclusion 

• Limit scope to a specific class of outcomes  
(directly observed behavior). 

• Use a model to 
• Address comparability of different outcome measurement 

procedures. 

• Separate effect size definition from estimation procedures. 

• Emphasize assumptions that justify estimation strategy. 

 

• Still need to address comparability with effect sizes from  
between-subjects designs  
(Shadish, Hedges, & Rindskopf, 2008; Hedges, Pustejovsky, & Shadish, 2012) 
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Single-case designs 

• Repeated measurements, often via direct observation of 
behaviors 

• Comparison of outcomes pre/post introduction of a 
treatment 

• Replication across a small sample of cases. 
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Partial interval recording 
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Session time 

1. Divide session into K short intervals, each of length P. 

2. During each interval, note whether behavior occurs at all. 

3. Calculate proportion of intervals where behavior occurs: 
 
Y = (# Intervals with behavior) / K. 

X - X X X X - X X X 

0 L 



Possible effect sizes for free-operant behavior 
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Duration Ratio 

Inter-Event Time Ratio 

Incidence Ratio 
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 Prevalence Odds Ratio 
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Outcomes in single-case research 

• Restricted-operant behavior occurs in response to a specific 
stimulus, often controlled by the investigator. 

• Free-operant behavior can occur at any time, without prompting 
or restriction by the investigator (e.g., physical aggression, motor 
stereotypy, smiling, slouching). 
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Outcome % of Studies 

Free-operant behavior 56 

Restricted-operant behavior 41 

Academic 8 

Physiological/psychological 6 

Other 3 

N = 122 single-case studies published in 2008, as identified by Shadish & Sullivan (2011). 



Measurement procedures 
for free-operant behavior 

Recording procedure % of Studies 

Event counting 60 

Interval recording 19 

Continuous recording 10 

Momentary time sampling 7 

Other 16 
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N = 68 single-case studies measuring free-operant behavior, a subset of all 122 studies published in 2008, as identified by Shadish & Sullivan 
(2011). Characteristics of single-case designs used to assess intervention effects in 2008. Behavior Research Methods, 43(4), 971–80. 



Effect size estimation: Continuous recording 

• A basic moment estimator: 

 

 

 

 

• Its approximate variance: 
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• Strategy 1:  
• Assume that μB , μT > μmin  for known μmin. 

• Estimate bounds on the true prevalence ratio. 

 

• Strategy 2:  
• Assume that μB = μT  

• Assume that inter-event times are exponentially distributed.  

• Estimate bounds on true prevalence ratio (“sensitivity analysis”). 

 

• Strategy 3: 
• Follow strategy 2, but for known μ* = μB = μT . 

• This leads to a point estimate for the prevalence ratio. 

 

Partial interval data: Analysis strategies 
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where 
 
 

 

 

YB outcome in baseline phase 
YT outcome in treatment phase 

 

 

 

 

• Pick a value μmin where you are certain that μB , μT > μmin . 

• Then, under ARP, 
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Partial interval data: Strategy 1 
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Partial interval data: Strategy 1 (cont.) 

• Estimate the bounds with sample means. 

     

 

 
 sample mean in baseline phase,  sample mean in treatment phase 

 

• With approximate variance (on log-scale) 

 

 

 
 sample variance in baseline phase, sample variance in treatment phase 

          nB    observations in baseline phase,          nT  observations in treatment phase 
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Partial interval data: Strategy 2 

• Assume that IETs are exponentially distributed. 

• Assume that μB = μT.  

• If E(YT) < E(YB) then 

 

 

 

• Estimate the bounds with sample means. 
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Partial interval data: Strategy 3 

Assumptions: 

1. IETs are exponentially distributed. 

2. Average duration is constant across phases: μB = μT. 

3. Assume that μB = μT = μ*, for some known μ*.  

23 



Partial interval data: Strategy 3 (cont.) 

• Find estimates for λB and λT by solving 
 

 

 

• Estimate Ω with  
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Dunlap, et al. (1994): Strategy 1 

0.01 0.1 0.5 1 2

Problem behavior prevalence ratio

Ahmad

Sven

Wendall

Average

[0.01,0.19]

[0.04,1.95]

[0.03,2.06]

[0.03,0.67]

μmin = 5 s 

Choice making to promote adaptive behavior for students with emotional and 
behavioral challenges. 
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Dunlap, et al. (1994): Strategy 2 

0.01 0.1 0.5 1 2

Problem behavior prevalence ratio

Ahmad

Sven

Wendall

Average

[0.02,0.04]

[0.14,0.4]

[0.15,0.32]

[0.02,0.47]

Choice making to promote adaptive behavior for students with emotional and 
behavioral challenges. 



Recording procedure Cases % 

Partial interval recording 19 59 

Continuous recording 5 16 

Event counting 3 9 

Momentary time sampling 1 3 

Other 4 13 

0.05 0.10 0.20 0.50 1.00

Problem Behavior Prevalence Ratio

Naive

Strategy 1

Strategy 2

[0.19,0.43]

[0.09,0.73]

[0.16,0.43]

μmin = 5 s 
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Shogren (2004) meta-analysis 
The effect of choice-making as an intervention for problem behavior.  


